期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于多尺度时空Transformer的视频动态场景图生成模型
被引量:
1
1
作者
王朱佳
余宙
+1 位作者
俞俊
范建平
《计算机应用》
CSCD
北大核心
2024年第1期47-57,共11页
为应对动态视频中物体间关系在时间维度上的动态变化,提出一种基于多尺度时空Transformer的视频动态场景图生成模型,在经典的Transformer架构基础上引入了多尺度建模思想,以实现对视频动态细粒度语义的精确建模。首先,在空间维度上保留...
为应对动态视频中物体间关系在时间维度上的动态变化,提出一种基于多尺度时空Transformer的视频动态场景图生成模型,在经典的Transformer架构基础上引入了多尺度建模思想,以实现对视频动态细粒度语义的精确建模。首先,在空间维度上保留了传统模型对物体在全局空间相关性的关注;同时还对物体间的相对位置进行了局部空间相关性建模,以便更好地理解人和物之间的交互动态,提供更准确的语义分析结果。其次,在时间维度上,除了保留传统模型对视频中物体短期时间相关性的关注外,还关注了同一对物体在完整视频中的长期时间相关性,通过更全面地建模物体之间的长期关系,生成更准确、连贯的场景图,在一定程度上缓解了由遮挡、重合等引起的场景图生成问题。最后,通过空间编码器与时间编码器的共同作用,更加精准地建模视频动态细粒度语义,克服了传统的单尺度模型的局限性。实验结果显示,在Action Genome基准数据集上,与基线模型STTran相比,在谓词分类、场景图分类与场景图检测三个任务的Recall@10指标上分别提升了5.0、2.8、2.9个百分点。实验结果表明,多尺度建模思想能够更加精确地建模,并有效地提高在视频动态场景图生成任务上的性能。
展开更多
关键词
动态场景图生成
注意力机制
多尺度建模
视频理解
语义分析
在线阅读
下载PDF
职称材料
题名
基于多尺度时空Transformer的视频动态场景图生成模型
被引量:
1
1
作者
王朱佳
余宙
俞俊
范建平
机构
杭州电子科技大学计算机学院
出处
《计算机应用》
CSCD
北大核心
2024年第1期47-57,共11页
基金
国家自然科学基金资助项目(62072147)
浙江省自然科学基金资助项目(LR22F020001,LDT23F02025F02)。
文摘
为应对动态视频中物体间关系在时间维度上的动态变化,提出一种基于多尺度时空Transformer的视频动态场景图生成模型,在经典的Transformer架构基础上引入了多尺度建模思想,以实现对视频动态细粒度语义的精确建模。首先,在空间维度上保留了传统模型对物体在全局空间相关性的关注;同时还对物体间的相对位置进行了局部空间相关性建模,以便更好地理解人和物之间的交互动态,提供更准确的语义分析结果。其次,在时间维度上,除了保留传统模型对视频中物体短期时间相关性的关注外,还关注了同一对物体在完整视频中的长期时间相关性,通过更全面地建模物体之间的长期关系,生成更准确、连贯的场景图,在一定程度上缓解了由遮挡、重合等引起的场景图生成问题。最后,通过空间编码器与时间编码器的共同作用,更加精准地建模视频动态细粒度语义,克服了传统的单尺度模型的局限性。实验结果显示,在Action Genome基准数据集上,与基线模型STTran相比,在谓词分类、场景图分类与场景图检测三个任务的Recall@10指标上分别提升了5.0、2.8、2.9个百分点。实验结果表明,多尺度建模思想能够更加精确地建模,并有效地提高在视频动态场景图生成任务上的性能。
关键词
动态场景图生成
注意力机制
多尺度建模
视频理解
语义分析
Keywords
dynamic scene graph generation
attention mechanism
multi-scale modeling
video understanding
semantic analysis
分类号
TP391.4 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于多尺度时空Transformer的视频动态场景图生成模型
王朱佳
余宙
俞俊
范建平
《计算机应用》
CSCD
北大核心
2024
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部