期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于可解释动态图注意力网络的短期电力负荷预测
1
作者
原野
王海燕
+2 位作者
袁新平
李梦宇
何杰
《计算机应用》
北大核心
2025年第S1期329-333,共5页
短期电力负荷预测对于电力系统中的负荷调度至关重要,然而现有方法在捕捉负荷中心的动态时空关系方面存在不足。因此,提出一种基于动态图注意力网络(Dyn-GAT)和时间卷积网络(TCN)的Dyn-GAT-TCN(Dynamic Graph ATtention Temporal Convol...
短期电力负荷预测对于电力系统中的负荷调度至关重要,然而现有方法在捕捉负荷中心的动态时空关系方面存在不足。因此,提出一种基于动态图注意力网络(Dyn-GAT)和时间卷积网络(TCN)的Dyn-GAT-TCN(Dynamic Graph ATtention Temporal Convolutional Network)模型。首先,结合负荷空间依赖关系构建负荷时空网络图,并利用时间滑动窗口生成负荷动态图序列;然后,基于Dyn-GAT自适应地调整注意力权重,从而动态建模负荷中心间的空间依赖性;最后,基于TCN提取时间序列中的长短期依赖信息,以实现更精准的负荷预测。在纽约独立系统运营商(NYISO)的一个公开数据集上的实验结果表明,所提模型在一天时间尺度内的均方根误差(RMSE)为2.40,平均绝对百分比误差(MAPE)为1.46%。在云南电网公司的一个数据集上的验证结果表明,所提模型优于已有的相关方法。此外,所提模型的注意力机制增强了可解释性,并能识别对负荷预测影响最大的关键节点。可见,Dyn-GAT-TCN模型在建模和分析电力负荷的动态时空关系方面具有显著优势,为电力系统的调度优化提供了准确且可解释的预测支持。
展开更多
关键词
短期电力负荷预测
动态图注意力网络
时间卷积
网络
时空关系建模
可解释性分析
在线阅读
下载PDF
职称材料
TDGCN:触发器增强的两阶段动态图卷积网络的对话关系抽取研究
被引量:
1
2
作者
自彦丞
李卫疆
《小型微型计算机系统》
北大核心
2025年第1期90-96,共7页
随着互联网中对话数据的不断增加,从中提取关系三元组对于自然语言处理的各个下游任务至关重要.为了改进对话关系抽取的性能,D.Yu等人在数据集中引入了“触发器”的概念,该概念为关系抽取提供了重要的线索.然而,目前对于触发器的应用还...
随着互联网中对话数据的不断增加,从中提取关系三元组对于自然语言处理的各个下游任务至关重要.为了改进对话关系抽取的性能,D.Yu等人在数据集中引入了“触发器”的概念,该概念为关系抽取提供了重要的线索.然而,目前对于触发器的应用还仅仅限于将其作为一个模型训练的附加任务,并未在关系三元组推理中充分利用.本文提出了一个两阶段的动态图模型,通过引入动态机制,有效地改进了现有静态构造的图注意力模型在处理关系重叠时的歧义问题.并且在动态图模型中引入了触发器节点,以便更充分地利用触发器来进行关系推理.整个模型在DialogRE数据集上进行了实验,相对于基线模型,该模型在验证集上的F1值提升了2.2%,在测试集上提升了2%.并且本文对所提出的机制进行了进一步分析,通过实验验证了其有效性.
展开更多
关键词
动态图注意力网络
对话关系抽取
触发器
在线阅读
下载PDF
职称材料
题名
基于可解释动态图注意力网络的短期电力负荷预测
1
作者
原野
王海燕
袁新平
李梦宇
何杰
机构
云南电网有限责任公司信息中心
昆明能讯科技有限责任公司
出处
《计算机应用》
北大核心
2025年第S1期329-333,共5页
基金
云南电网数字化项目(059300HK42222018)。
文摘
短期电力负荷预测对于电力系统中的负荷调度至关重要,然而现有方法在捕捉负荷中心的动态时空关系方面存在不足。因此,提出一种基于动态图注意力网络(Dyn-GAT)和时间卷积网络(TCN)的Dyn-GAT-TCN(Dynamic Graph ATtention Temporal Convolutional Network)模型。首先,结合负荷空间依赖关系构建负荷时空网络图,并利用时间滑动窗口生成负荷动态图序列;然后,基于Dyn-GAT自适应地调整注意力权重,从而动态建模负荷中心间的空间依赖性;最后,基于TCN提取时间序列中的长短期依赖信息,以实现更精准的负荷预测。在纽约独立系统运营商(NYISO)的一个公开数据集上的实验结果表明,所提模型在一天时间尺度内的均方根误差(RMSE)为2.40,平均绝对百分比误差(MAPE)为1.46%。在云南电网公司的一个数据集上的验证结果表明,所提模型优于已有的相关方法。此外,所提模型的注意力机制增强了可解释性,并能识别对负荷预测影响最大的关键节点。可见,Dyn-GAT-TCN模型在建模和分析电力负荷的动态时空关系方面具有显著优势,为电力系统的调度优化提供了准确且可解释的预测支持。
关键词
短期电力负荷预测
动态图注意力网络
时间卷积
网络
时空关系建模
可解释性分析
Keywords
short-term power load forecasting
Dynamic Graph ATtention network(Dyn-GAT)
Temporal Convolutional Network(TCN)
spatio-temporal relationship modeling
interpretability analysis
分类号
TP399 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
TDGCN:触发器增强的两阶段动态图卷积网络的对话关系抽取研究
被引量:
1
2
作者
自彦丞
李卫疆
机构
昆明理工大学信息工程与自动化学院
昆明理工大学云南省人工智能重点实验室
出处
《小型微型计算机系统》
北大核心
2025年第1期90-96,共7页
基金
国家自然科学基金项目(62066022)资助。
文摘
随着互联网中对话数据的不断增加,从中提取关系三元组对于自然语言处理的各个下游任务至关重要.为了改进对话关系抽取的性能,D.Yu等人在数据集中引入了“触发器”的概念,该概念为关系抽取提供了重要的线索.然而,目前对于触发器的应用还仅仅限于将其作为一个模型训练的附加任务,并未在关系三元组推理中充分利用.本文提出了一个两阶段的动态图模型,通过引入动态机制,有效地改进了现有静态构造的图注意力模型在处理关系重叠时的歧义问题.并且在动态图模型中引入了触发器节点,以便更充分地利用触发器来进行关系推理.整个模型在DialogRE数据集上进行了实验,相对于基线模型,该模型在验证集上的F1值提升了2.2%,在测试集上提升了2%.并且本文对所提出的机制进行了进一步分析,通过实验验证了其有效性.
关键词
动态图注意力网络
对话关系抽取
触发器
Keywords
dynamic graph attention network
dialogue relationship extraction
trigger
分类号
TP391 [自动化与计算机技术—计算机应用技术]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于可解释动态图注意力网络的短期电力负荷预测
原野
王海燕
袁新平
李梦宇
何杰
《计算机应用》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
TDGCN:触发器增强的两阶段动态图卷积网络的对话关系抽取研究
自彦丞
李卫疆
《小型微型计算机系统》
北大核心
2025
1
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部