为提高旋转阀脉冲爆震发动机(RVPDE)燃油系统性能,增强电磁阀的高频适应性,应用汽车行业领先的共轨技术,设计满足RVPDE性能要求的共轨式燃油系统(Common Rail System of PDE,CRP),并对系统控制性能、流量特性和动态响应特性进行实验研...为提高旋转阀脉冲爆震发动机(RVPDE)燃油系统性能,增强电磁阀的高频适应性,应用汽车行业领先的共轨技术,设计满足RVPDE性能要求的共轨式燃油系统(Common Rail System of PDE,CRP),并对系统控制性能、流量特性和动态响应特性进行实验研究。研究结果表明:CRP喷射时间可控制到微秒级,所有爆震管每次喷射之间的差别可控制在5%以内,电磁阀开启、关闭的动态响应时间均在1ms以内。展开更多
In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density met...In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density method. A concerned analytical landing gear model for simulating actual aircraft taxiing is formulated. The equivalent linearization results obtained by probabilistic method are inducted to treat landing gear non linear parameters such as shock absorber air spring force, hydraulic damping and Coulomb friction, tire stiffness and damping. The power spectral density for non stationary analysis is obtained via variable substitution and then Fourier transform. A representative response quantity, the overload of the aircraft gravity center, is analyzed. The frequency response function of the gravity overload is derived. The case study demonstrates that under the same reached velocity the root mean square of the gravity acceleration response from constant acceleration taxiing is smaller than that from constant velocity taxiing and the root mean square of the gravity acceleration response from lower acceleration taxiing is greater than that from higher acceleration.展开更多
Aim To analyze dynamic failure of aerospace strutures subjected lateral impulsive loading. Methods Structures were modeled as rigid-perfectly plastic free-free stepped beams. Basic equations of motion un set up f...Aim To analyze dynamic failure of aerospace strutures subjected lateral impulsive loading. Methods Structures were modeled as rigid-perfectly plastic free-free stepped beams. Basic equations of motion un set up for analysis. Results Final pat deformation and rigid motion solutions were determined for a uniform impulsive loading. The critical rupture conditions for a space shuttle and a missile were obtained. Conclusion Failure is possible for aerospace structures under a uniform impulsive loading, but it is mere difficult in space.展开更多
To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A...To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.展开更多
Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are...Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.展开更多
After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Throu...After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the wave-induced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.展开更多
文摘为提高旋转阀脉冲爆震发动机(RVPDE)燃油系统性能,增强电磁阀的高频适应性,应用汽车行业领先的共轨技术,设计满足RVPDE性能要求的共轨式燃油系统(Common Rail System of PDE,CRP),并对系统控制性能、流量特性和动态响应特性进行实验研究。研究结果表明:CRP喷射时间可控制到微秒级,所有爆震管每次喷射之间的差别可控制在5%以内,电磁阀开启、关闭的动态响应时间均在1ms以内。
文摘In this paper a novel approach for the analysis of non stationary response of aircraft landing gear taxiing over an unevenness runway at variable velocity is explored, which is based on the power spectral density method. A concerned analytical landing gear model for simulating actual aircraft taxiing is formulated. The equivalent linearization results obtained by probabilistic method are inducted to treat landing gear non linear parameters such as shock absorber air spring force, hydraulic damping and Coulomb friction, tire stiffness and damping. The power spectral density for non stationary analysis is obtained via variable substitution and then Fourier transform. A representative response quantity, the overload of the aircraft gravity center, is analyzed. The frequency response function of the gravity overload is derived. The case study demonstrates that under the same reached velocity the root mean square of the gravity acceleration response from constant acceleration taxiing is smaller than that from constant velocity taxiing and the root mean square of the gravity acceleration response from lower acceleration taxiing is greater than that from higher acceleration.
文摘Aim To analyze dynamic failure of aerospace strutures subjected lateral impulsive loading. Methods Structures were modeled as rigid-perfectly plastic free-free stepped beams. Basic equations of motion un set up for analysis. Results Final pat deformation and rigid motion solutions were determined for a uniform impulsive loading. The critical rupture conditions for a space shuttle and a missile were obtained. Conclusion Failure is possible for aerospace structures under a uniform impulsive loading, but it is mere difficult in space.
文摘To improve the rotor off-axis response prediction, aerodynamic models must include the wake distortion effects of the maneuvering rotor. And the crux of the matter is to obtain a precise wake curvature parameter KR. A Peters-He finite-state wake model is improved to incorporate the operating-state-dependent KR to embody maneuver-induced effects. The curvature parameter KR varies with rotor forward speed, thrust and maneuvering angular rate according to a smoking experiment. Moreover, aerodynamic force/moment experiment indicates that after a quasi-step angular input, both on-axis and off-axis rotor responses show that an overshoot and its amplitude increases with the pitching rate. The comparison between theoretical and experimental results shows that the operating-state-accurate curvature parameter must be adopted to obtain accurate aerodynamic forces/moments, especially for the off-axis response. Additionally, combined with a dynamic wake distortion model, the obtained correlation agrees well with experimental data.
文摘Study on the dynamic response, and especially the nonlinear dynamic response of stiffened plates is complicated by their discontinuity and inhomogeneity. The finite element method (FEM) and the finite strip method are usually adopted in their analysis. Although many useful conclusions have been obtained, the computational cost is enormous. Based on some assumptions, the dynamic plastic response of clamped stiffened plates with large deflections was theoretically investigated herein by a singly symmetric beam model. Firstly, the deflection conditions that a plastic string must satisfy were obtained by the linearized moment-axial force interaction curve for singly symmetric cross sections and the associated plastic flow rule. Secondly, the possible motion mechanisms of the beam under different load intensity were analysed in detail. For structures with plastic deformations, a simplified method was then given that the arbitrary impact load can be replaced equivalently by a rectangular pulse. Finally, to confirm the validity of the proposed method, the dynamic plastic response of a one-way stiffened plate with four fully clamped edges was calculated. The theoretical results were in good agreement with those of FEM. It indicates that the present calculation model is easy and feasible, and the equivalent substitution of load almost has no influence on the final deflection.
基金the National Natural Science Foundation of China (No. 50104013).
文摘After the erection of the Three Gorges Dam, the water level of Yangtze River will reach 175 m, and the average wave crest will be up to 1 m. Therefore the wave action cannot be neglected for the slope stability. Through simulation tests, the wave-induced dynamic response of the slope is analyzed. The soil body is taken as linear elastic body when it has a small deformation under the small wave action. Based on tests, the excess pore pressure and slope displacement under the loading in different wave period are analyzed. The ratio of dynamic strength and static strength to the breaking process of the slope is discussed. It is demonstrated that smaller wave period gives rise to a larger strain of the slope under the same stress. At different depth of water, different weakness effect on the stability of the soil slope is observed and the slope has an adaptability to the wave action to some extent.