目前在铝材表面缺陷检测领域,常用的检测模型存在检测精度不高、实时性不强和参数量大等问题。针对上述问题,对目标检测模型YOLOv8做了改进。首先,该模型使用自研的动态可变形卷积模块取代原有最后一层C2f模块;其次,将RT-DETR(real-time...目前在铝材表面缺陷检测领域,常用的检测模型存在检测精度不高、实时性不强和参数量大等问题。针对上述问题,对目标检测模型YOLOv8做了改进。首先,该模型使用自研的动态可变形卷积模块取代原有最后一层C2f模块;其次,将RT-DETR(real-time detection transformer)模型中的检测头移植到新模型中,利用Transformer中解码器的思想,省去了模型后处理的步骤;最后,将NWD(normalized Wasserstein distance)loss和WIoUv3(wise-intersection over union version 3)loss结合作为改进后模型的回归损失函数,使模型动态筛选锚框,解决IoU对于不同尺寸缺陷类型敏感度不同导致的标签分配不准确的问题。改进之后的模型相比于基线模型YOLOv8,平均精度提高了3.8%,每秒处理帧数提高至92 f/s,同时在钢材表面缺陷检测数据集和太阳能电池板表面缺陷检测数据集上也具有很强的鲁棒性,新模型在实时检测、实际部署中具有很大优势。展开更多
文摘目前在铝材表面缺陷检测领域,常用的检测模型存在检测精度不高、实时性不强和参数量大等问题。针对上述问题,对目标检测模型YOLOv8做了改进。首先,该模型使用自研的动态可变形卷积模块取代原有最后一层C2f模块;其次,将RT-DETR(real-time detection transformer)模型中的检测头移植到新模型中,利用Transformer中解码器的思想,省去了模型后处理的步骤;最后,将NWD(normalized Wasserstein distance)loss和WIoUv3(wise-intersection over union version 3)loss结合作为改进后模型的回归损失函数,使模型动态筛选锚框,解决IoU对于不同尺寸缺陷类型敏感度不同导致的标签分配不准确的问题。改进之后的模型相比于基线模型YOLOv8,平均精度提高了3.8%,每秒处理帧数提高至92 f/s,同时在钢材表面缺陷检测数据集和太阳能电池板表面缺陷检测数据集上也具有很强的鲁棒性,新模型在实时检测、实际部署中具有很大优势。