期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
动态递归模糊神经网络及其BP学习算法 被引量:4
1
作者 黄元峰 刘源 胡波 《武汉化工学院学报》 2004年第4期65-68,77,共5页
提出了一种新型的动态递归模糊神经网络,并根据动态递归神经网络的数学模型推导出其动态反向传播学习算法,仿真结果表明对于动态系统的辨识,动态递归模糊神经网络较传统模糊神经网络在辨识精度和稳定性方面具有更好的效果.
关键词 动态递归模糊神经网络 动态反向传播学习算法 动态系统 辨识
在线阅读 下载PDF
动态T-S递归模糊神经网络观测器状态辨识
2
作者 马成禄 《消费电子》 2014年第8期58-59,共2页
传统模糊神经网络是一种静态映射,不适宜用于感应电机状态辨识。为提高系统辨识精度,提出一种动态T-S递归模糊神经网络观测器。根据动态递归神经网络观测器模型推导其动态反向传播算法,并利用Lyapunov定理证明该观测器具有全局收敛... 传统模糊神经网络是一种静态映射,不适宜用于感应电机状态辨识。为提高系统辨识精度,提出一种动态T-S递归模糊神经网络观测器。根据动态递归神经网络观测器模型推导其动态反向传播算法,并利用Lyapunov定理证明该观测器具有全局收敛性。仿真结果表明:由于动态T-S递归模糊神经网络观测器同时利用了当前数据和历史数据进行状态辨识,较传统模糊神经网络观测器在辨识精度和稳定性方面具有更好的效果,且具有更好的收敛性。 展开更多
关键词 动态T-S模糊神经网络 动态反向传播算法 收敛性 状态辨识
在线阅读 下载PDF
基于动态递归模糊神经网络的动态系统辨识 被引量:6
3
作者 张友旺 《中南工业大学学报》 CSCD 北大核心 2003年第3期277-280,共4页
模糊系统和神经网络由于具有逼近任意连续非线性映射的特性而广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识,而现实工程中的控制对象反映的是系统的动态行为.为了提高动态系统的辨识精度,... 模糊系统和神经网络由于具有逼近任意连续非线性映射的特性而广泛应用于系统的辨识和控制,但是传统的模糊神经网络是一种静态映射,不适用于动态系统的辨识,而现实工程中的控制对象反映的是系统的动态行为.为了提高动态系统的辨识精度,提出了一种新型的动态递归模糊神经网络,并根据动态递归神经网络的数学模型推导其动态反向传播学习算法及其改进算法.仿真结果表明:由于动态模糊神经网络的辨识过程同时利用了系统的当前数据和历史数据,对动态系统的辨识,特别是对具有纯时间延迟动态系统的辨识,较传统模糊神经网络在辨识精度和稳定性方面具有更好的效果.同时,确定网络权值和隶属函数参数初始值的方法可使动态系统的辨识过程具有更快的收敛速度. 展开更多
关键词 动态递归 模糊神经网络 动态反向传播学习算法 动态系统 辨识
在线阅读 下载PDF
Approximation Property of the Modified Elman Network 被引量:5
4
作者 任雪梅 陈杰 +1 位作者 龚至豪 窦丽华 《Journal of Beijing Institute of Technology》 EI CAS 2002年第1期19-23,共5页
A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three la... A new type of recurrent neural network is discussed, which provides the potential for modelling unknown nonlinear systems. The proposed network is a generalization of the network described by Elman, which has three layers including the input layer, the hidden layer and the output layer. The input layer is composed of two different groups of neurons, the group of external input neurons and the group of the internal context neurons. Since arbitrary connections can be allowed from the hidden layer to the context layer, the modified Elman network has more memory space to represent dynamic systems than the Elman network. In addition, it is proved that the proposed network with appropriate neurons in the context layer can approximate the trajectory of a given dynamical system for any fixed finite length of time. The dynamic backpropagation algorithm is used to estimate the weights of both the feedforward and feedback connections. The methods have been successfully applied to the modelling of nonlinear plants. 展开更多
关键词 nonlinear systems Elman network dynamic backpropagation algorithm MODELLING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部