期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于动态压力控制算子的磷虾群算法
被引量:
4
1
作者
沈莹
黄樟灿
+1 位作者
谈庆
刘宁
《计算机应用》
CSCD
北大核心
2019年第3期663-667,共5页
针对基础磷虾群(KH)算法在求解复杂函数优化问题时局部搜索能力差、求解精度低、收敛速度慢、容易陷入局部最优等问题,提出一种基于动态压力控制算子的磷虾群算法(DPCKH)。该算法将一种新的动态压力控制算子加入了标准磷虾群算法,使其...
针对基础磷虾群(KH)算法在求解复杂函数优化问题时局部搜索能力差、求解精度低、收敛速度慢、容易陷入局部最优等问题,提出一种基于动态压力控制算子的磷虾群算法(DPCKH)。该算法将一种新的动态压力控制算子加入了标准磷虾群算法,使其处理复杂函数优化问题更有效。动态压力控制算子通过欧氏距离量化了多个不同优秀个体对目标个体的诱导效应,进而在优秀个体附近加速产生新磷虾个体,提高了磷虾个体的局部探索能力。通过比较蚁群算法(ACO)、差分进化算法(DE)、磷虾群算法(KH)、改进的磷虾群算法(KHLD)和粒子群算法(PSO),DPCKH算法在7个测试函数上的结果表明,DPCKH算法与ACO算法、DE算法、KH算法、KHLD算法和PSO算法相比有着更强的局部勘测能力,其开采能力更强。
展开更多
关键词
磷虾群算法
动态压力控制算子
函数优化
开采能力
探索能力
在线阅读
下载PDF
职称材料
题名
基于动态压力控制算子的磷虾群算法
被引量:
4
1
作者
沈莹
黄樟灿
谈庆
刘宁
机构
武汉理工大学理学院
出处
《计算机应用》
CSCD
北大核心
2019年第3期663-667,共5页
文摘
针对基础磷虾群(KH)算法在求解复杂函数优化问题时局部搜索能力差、求解精度低、收敛速度慢、容易陷入局部最优等问题,提出一种基于动态压力控制算子的磷虾群算法(DPCKH)。该算法将一种新的动态压力控制算子加入了标准磷虾群算法,使其处理复杂函数优化问题更有效。动态压力控制算子通过欧氏距离量化了多个不同优秀个体对目标个体的诱导效应,进而在优秀个体附近加速产生新磷虾个体,提高了磷虾个体的局部探索能力。通过比较蚁群算法(ACO)、差分进化算法(DE)、磷虾群算法(KH)、改进的磷虾群算法(KHLD)和粒子群算法(PSO),DPCKH算法在7个测试函数上的结果表明,DPCKH算法与ACO算法、DE算法、KH算法、KHLD算法和PSO算法相比有着更强的局部勘测能力,其开采能力更强。
关键词
磷虾群算法
动态压力控制算子
函数优化
开采能力
探索能力
Keywords
Krill Herd(KH)algorithm
dynamic pressure control operator
function optimization
exploitation capacity
exploration capacity
分类号
TP18 [自动化与计算机技术—控制理论与控制工程]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于动态压力控制算子的磷虾群算法
沈莹
黄樟灿
谈庆
刘宁
《计算机应用》
CSCD
北大核心
2019
4
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部