期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
2
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法
1
作者
杨松铭
王玫
《桂林理工大学学报》
北大核心
2025年第2期251-259,共9页
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神...
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神经网络进行分类,提高了室内跌倒事件识别的抗噪性能。通过SimAM注意力、特征金字塔(FPN)以及动态区域感知卷积(DRConv)来改进网络结构。实验结果表明,在不同数据集下,该方法比传统识别方法性能更优。改进后的网络模型在A3FALL数据集上的查准率、召回率和F1-Score分别达到了98.43%、98.21%和98.32%;对于人类跌倒的声音识别,其F1-Score达到了96.45%,相较于其他传统网络模型都具有更好的表现。
展开更多
关键词
跌倒检测
SimAM
卷积
神经网络
特征金字塔
动态区域感知卷积
梅尔频率倒谱系数(MFCC)
在线阅读
下载PDF
职称材料
基于改进YOLOv5算法的钢管焊缝缺陷检测
被引量:
6
2
作者
蔡绪明
王文武
《组合机床与自动化加工技术》
北大核心
2023年第11期74-78,共5页
针对X光图像下钢管焊缝缺陷对比度弱﹑缺陷尺寸大小不一﹑同类缺陷形状变化大等因素导致的缺陷检测率不高的问题,提出一种改进YOLOv5的焊缝缺陷检测算法。首先,对X光图像进行去模糊处理,获得较清晰的焊缝图像;其次,在YOLOv5的主干网络...
针对X光图像下钢管焊缝缺陷对比度弱﹑缺陷尺寸大小不一﹑同类缺陷形状变化大等因素导致的缺陷检测率不高的问题,提出一种改进YOLOv5的焊缝缺陷检测算法。首先,对X光图像进行去模糊处理,获得较清晰的焊缝图像;其次,在YOLOv5的主干网络中引入动态区域感知卷积代替标准卷积,保证参数不增加的情况下,增强特征提取能力;进一步针对YOLOv5中CSP特征金字塔融合准则过于简单的问题,采用了一种高效的特征融合机制以增强特征表达能力;最后,在检测头部分引入可学习权重参数,实现检测头中的特征自适应融合。实验结果表明,与传统YOLOv5算法相比,虽然检测速度从32.2 fps降到27.5 fps,但是检测的mAP提高了3.3%,达到94.6%,初步满足实际生产中钢管焊缝缺陷自动检测需求。
展开更多
关键词
焊缝缺陷检测
YOLOv5
动态区域感知卷积
空间特征自适应融合
在线阅读
下载PDF
职称材料
题名
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法
1
作者
杨松铭
王玫
机构
桂林理工大学物理与电子信息工程学院
出处
《桂林理工大学学报》
北大核心
2025年第2期251-259,共9页
基金
国家自然科学基金项目(62071135,61961010)
广西自然科学基金项目(2019GXNSFBA245103)。
文摘
为了解决现有的老年人跌倒事件识别方法存在的相关局限性,提出一种利用声音信号来进行跌倒检测的方法。该方法在声学特征提取阶段,从时间维度对梅尔谱特征进行补充,将梅尔谱及其一阶、二阶差分系数构建为类似图片的三维特征,使用卷积神经网络进行分类,提高了室内跌倒事件识别的抗噪性能。通过SimAM注意力、特征金字塔(FPN)以及动态区域感知卷积(DRConv)来改进网络结构。实验结果表明,在不同数据集下,该方法比传统识别方法性能更优。改进后的网络模型在A3FALL数据集上的查准率、召回率和F1-Score分别达到了98.43%、98.21%和98.32%;对于人类跌倒的声音识别,其F1-Score达到了96.45%,相较于其他传统网络模型都具有更好的表现。
关键词
跌倒检测
SimAM
卷积
神经网络
特征金字塔
动态区域感知卷积
梅尔频率倒谱系数(MFCC)
Keywords
fall detection
SimAM
convolutional neural network
FPN
DRConv
MFCC
分类号
TP389.1 [自动化与计算机技术—计算机系统结构]
在线阅读
下载PDF
职称材料
题名
基于改进YOLOv5算法的钢管焊缝缺陷检测
被引量:
6
2
作者
蔡绪明
王文武
机构
中石化石油机械股份有限公司沙市钢管分公司
武汉科技大学信息科学与工程学院
出处
《组合机床与自动化加工技术》
北大核心
2023年第11期74-78,共5页
基金
国家自然科学基金项目(62173262)。
文摘
针对X光图像下钢管焊缝缺陷对比度弱﹑缺陷尺寸大小不一﹑同类缺陷形状变化大等因素导致的缺陷检测率不高的问题,提出一种改进YOLOv5的焊缝缺陷检测算法。首先,对X光图像进行去模糊处理,获得较清晰的焊缝图像;其次,在YOLOv5的主干网络中引入动态区域感知卷积代替标准卷积,保证参数不增加的情况下,增强特征提取能力;进一步针对YOLOv5中CSP特征金字塔融合准则过于简单的问题,采用了一种高效的特征融合机制以增强特征表达能力;最后,在检测头部分引入可学习权重参数,实现检测头中的特征自适应融合。实验结果表明,与传统YOLOv5算法相比,虽然检测速度从32.2 fps降到27.5 fps,但是检测的mAP提高了3.3%,达到94.6%,初步满足实际生产中钢管焊缝缺陷自动检测需求。
关键词
焊缝缺陷检测
YOLOv5
动态区域感知卷积
空间特征自适应融合
Keywords
weld defect detection
YOLOv5
dynamic region-aware convolution
adaptively spatial feature fusion
分类号
TH162 [机械工程—机械制造及自动化]
TG66 [金属学及工艺—金属切削加工及机床]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于梅尔谱特征和改进ResNet网络的室内跌倒检测方法
杨松铭
王玫
《桂林理工大学学报》
北大核心
2025
0
在线阅读
下载PDF
职称材料
2
基于改进YOLOv5算法的钢管焊缝缺陷检测
蔡绪明
王文武
《组合机床与自动化加工技术》
北大核心
2023
6
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部