Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s...Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.展开更多
Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic re...Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).展开更多
Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was bui...Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe.展开更多
文摘Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.
基金Project(101048) supported by Fok Ying Tung Education FoundationProject(E2008000835) supported by the Natural Science Foundation of Hebei Province,China
文摘Based on the steady-state strain measured by single-pass hot compression tests,the method by a double-pass hot compression testing was developed to measure the metadynamic-recrystallization kinetics.The metadynamic recrystallization behavior of low-alloy steel Q345B during hot compression deformation was investigated in the temperature range of 1 000-1 100℃,the strain rate range of 0.01-0.10 s -1 and the interpass time range of 0.5-50 s on a Gleeble-3500 thermo-simulation machine.The results show that metadynamic recrystallization during the interpass time can be observed.As the deformation temperature and strain rate increase,softening caused by metadynamic recrystallization is obvious.According to the data of thermo-simulation,the metadynamic recrystallization activation energy is obtained to be Qmd=100.674 kJ/mol and metadynamic recrystallization kinetics model is set up.Finally,the error analysis of metadynamic recrystallization kinetics model proves that the model has high accuracy(correlation coefficient R=0.988 6).
基金Project(2008BAB32B03) supported by the National Science and Technology Pillar Program during the 11th Five-year Plan Period of China
文摘Based on the pipe transportation of paste-like backfilling system of a certain deep coal mine,its dynamics process was simulated and analyzed.A two-dimensional dynamic model of extraordinary deep and lone pipe was built by GAMBIT,on the basis of which the simulation was done by implicit solver of FLUENT 2ddp.The results show that hydraulic loss of pipe transportation is less than the pressure produced by gravity,which means the backfilling material can flow by itself.When the inlet velocity is 3.2 m/s,the maximum velocity of 4.10 m/s is at the elbow and the maximum velocity in the horizontal pipe is 3.91 m/s,which can both meet the stability requirement.The results of the simulation are proved to be reliable by the residual monitor plotting of related parameter,so it can be concluded that the system of pipe transportation is safe.