期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于深度强化学习的节能工艺路线发现方法 被引量:2
1
作者 陶鑫钰 王艳 纪志成 《智能系统学报》 CSCD 北大核心 2023年第1期23-35,共13页
由于传统基于固定加工环境的工艺路线制定规则,无法快速响应加工环境的动态变化制定节能工艺路线。因此提出了基于深度Q网络(deep Q network,DQN)的节能工艺路线发现方法。基于马尔可夫决策过程,定义状态向量、动作空间、奖励函数,建立... 由于传统基于固定加工环境的工艺路线制定规则,无法快速响应加工环境的动态变化制定节能工艺路线。因此提出了基于深度Q网络(deep Q network,DQN)的节能工艺路线发现方法。基于马尔可夫决策过程,定义状态向量、动作空间、奖励函数,建立节能工艺路线模型,并将加工环境动态变化的节能工艺路线规划问题,转化为DQN智能体决策问题,利用决策经验的可复用性和可扩展性,进行求解,同时为了提高DQN的收敛速度和解的质量,提出了基于S函数探索机制和加权经验池,并使用了双Q网络。仿真结果表明,相比较改进前,改进后的算法在动态加工环境中能够更快更好地发现节能工艺路线;与遗传算法、模拟退火算法以及粒子群算法相比,改进后的算法不仅能够以最快地速度发现节能工艺路线,而且能得到相同甚至更高精度的解。 展开更多
关键词 深度强化学习 深度Q网络 动态加工环境 工艺路线 马尔可夫决策过程 智能体决策 双Q网络 启发式算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部