Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive r...Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.展开更多
In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a ...In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.展开更多
The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy w...The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.展开更多
Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the s...Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.展开更多
The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),trans...The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.展开更多
The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highr...The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highresolution transmission electron microscopy(HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength(σb)and elongation(δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m^(3) at 2000 s^(-1) and 177.34 MJ/m^(3) at 5000 s^(-1) which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×10;kg·m/s, the T6I6shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.展开更多
The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducte...The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.展开更多
Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the ...Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.展开更多
A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equation...A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.展开更多
Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching p...Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.展开更多
The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum mod...The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.展开更多
基金Projects(52378392,52478390)supported by the National Natural Science Foundation of ChinaProject(2024J08213)supported by the Natural Science Foundation of Fujian Province,China+1 种基金Project(00387088)supported by the“Foal Eagle Program”Youth Top-notch Talent Project of Fujian Province,ChinaProject(GY-Z23072)supported by the Scientific Research Foundation of Fujian University of Technology,China。
文摘Gypsum rocks are highly susceptible to mechanical deterioration under the coupled effects of wet-dry(W-D)cycles and flow rates,which significantly influence the stability of underground excavations.Despite extensive research on the effects of W-D cycles,the coupling influence of flow rates and W-D cycles on gypsum rocks remains poorly understood.This study investigates the mechanical behavior and deterioration mechanisms of gypsum rocks subjected to varying W-D cycles and flow rate conditions.Axial compression tests,along with nuclear magnetic resonance(NMR)techniques,were employed to analyze the stress-strain response and microstructural changes.Based on the disturbed state concept(DSC)theory,a W-D deterioration model and a DSC-based constitutive model were developed to describe the degradation trends and mechanical responses of gypsum rocks under different conditions.The results demonstrate that key mechanical indices,elastic modulus,cohesion,uniaxial compressive strength(UCS),and internal friction angle,exhibit logarithmic declines with increasing W-D cycles,with higher flow rates accelerating the deterioration process.The theoretical models accurately capture the nonlinear compaction behavior,peak stress,and post-peak response of gypsum specimens.This study provides valuable insights for predicting the mechanical behavior of gypsum rocks and improving the stability assessments of underground structures under complex environmental conditions.
基金Project(2010CB732004)supported by National Basic Research Program of ChinaProject(50934006)supported by the National Natural Science Foundation of China
文摘In order to investigate the mechanical properties and stress-strain curves of concrete at different ages under impact load,the impact compression tests of concrete at age of 1, 3, 7, 14 and 28 d were conducted with a large diameter split Hopkinson pressure bar, respectively. Based on statistical damage theory and Weibull distribution, combining the analysis of the change laws of stressstrain curves and viscosity coefficient of concrete with age, a damage constitutive model that can reflect the variation in dynamic mechanical properties with age was proposed. The stress-strain curves calculated from the proposed model are in good agreement with those from experimental data directly.
基金Projects(51275198,51422503)supported by the National Natural Science Foundation of ChinaProject(2012YQ030075)supported by Special Funds for Development of National Major Scientific Instruments and Equipments,China+1 种基金Project(NECT-12-0238)supported by Program for New Century Excellent Talents in University,ChinaProject(20150520108JH)supported by Young Scientist Fund of Jilin Province of China
文摘The effects of adding alloy element zinc on the static and dynamic mechanical properties of copper-zinc alloy were investigated. Tensile and low cycle fatigue behaviors of the C11000 copper and H63 copper-zinc alloy were obtained by using a miniature tester that combined the functions of in situ tensile and fatigue testing. A piezoelectric actuator was adopted as the actuator for the fatigue testing, and the feasibility of the fatigue actuator was verified by the transient harmonic response analysis based on static tensile preload and dynamic sinusoidal load. The experimental results show that the yield strength and tensile strength of the C11000 copper are improved after adding 37%(mass fraction) zinc, and H63 copper-zinc alloy presents more obvious cyclic hardening behavior and more consumed irreversible plastic work during each stress cycle compared with C11000 copper for the same strain controlled cycling. Additionally, based on the Manson-Coffin theory, the strain-life equations of the two materials were also obtained. C11000 copper and H63 copper-zinc alloy show transition life of 16832 and 1788 cycles, respectively.
文摘Cam profiles play an important part in the performance of cam mechanisms. Syntheses of cam profile designs and dynamics of cam designs are studied at first. Then, a cam profile design optimization model based on the six order classical spline and single DOF(degree of freedom) dynamic model of single-dwell cam mechanisms is developed. And dynamic constraints such as jumps and vibrations of followers are considered. This optimization model, with many advantages such as universalities of applications, conveniences to operations and good performances in improving kinematic and dynamic properties of cam mechanisms, is good except for the discontinuity of jerks at the end knots of cam profiles which will cause vibrations of cam systems. However, the optimization is improved by combining the six order classical spline with general polynomial spline which is the so-called "trade-offs". Finally, improved optimization is proven to have a better performance in designing cam profiles.
基金Project(2016YFB0300802)supported by the National Key Research and Development Program of China。
文摘The effect of Li(2.0 wt%)addition on mechanical properties and ageing precipitation behavior of Al-3.0 Mg 0.5 Si was investigated by tensile test,dynamic elasticity modulus test,scanning electron microscopy(SEM),transmission electron microscopy(TEM)and high-resolution transmission electron microscopy(HRTEM)images.The results show that the tensile strength of the Li-containing alloy can be significantly improved;however,the ductility is sharply decreased and the fracture mechanism changes from ductile fracture to intergranular fracture.The elasticity modulus of the Li-containing alloy increases by 11.6%compared with the base alloy.The microstructure observation shows that the Li addition can absolutely change the precipitation behavior of the base alloy,andδ′-Al_(3)Li phase becomes the main precipitates.Besides,β′′-Mg_(2)Si andδ′-Al_(3)Li dual phases precipitation can be visibly observed at 170℃ ageing for 100 h,although the quantity ofδ′-Al_(3)Li phase is more thanβ′′-Mg_(2)Si phase.The width of the precipitate-free zone(PFZ)of the Li-containing alloy is much wider at the over-ageing state than the base alloy,which has a negative impact on the ductile and results in the decrease of elongation.
基金Projects(52075166, 51875197) supported by the National Natural Science Foundation of ChinaProjects(2019RS2064,2019GK5043) supported by the Science and Technology Planning Project of Hunan Province,China。
文摘The effect of T6I6 treatment on the dynamic mechanical and microstructure behaviour of Al-Si-Mg-Cu cast alloy was investigated using split Hopkinson pressure bar(SHPB), transmission electron microscopy(TEM), and highresolution transmission electron microscopy(HRTEM). Besides, the impact resistances of T6I6 and T6 motor shells of new energy vehicles made of Al-Si-Mg-Cu cast alloy were compared using a trolley crash test. The results indicated that the main strengthening-phases of the T6 peak-aged and T6I6 peak-aged alloy were GP zone and β″ precipitates. T6I6treatment can increase the density and size of β″ precipitates in peak-aged alloy and enhance both its tensile strength(σb)and elongation(δ). The dynamic toughness values of T6I6 samples are 50.34 MJ/m^(3) at 2000 s^(-1) and 177.34 MJ/m^(3) at 5000 s^(-1) which are 20% and 12% higher than those of T6 samples, respectively. Compared with a T6 shell, the overall deformation of T6I6 shell is more uniform during the crash test. At an impact momentum of 3.5×10;kg·m/s, the T6I6shell breaks down at 0.38 s which is 0.10 s later than the T6 shell.
基金Projects(50708072,51378385)supported by the National Natural Science Foundation of China
文摘The AERORail, a new aerial transport platform, was chosen as the object of this work. Following a review of the literature on static behaviors, model tests on the basic dynamic mechanical characteristics were conducted. A series of 90 tests were completed with different factors, including tension force, vehicle load and vehicle speed. With regard to the proper tension and vehicle load, at a certain speed range, the tension increments of the rail's cable were proved relatively small. It can be assumed that the change of tension is small and can be reasonably ignored when the tension of an entire span is under a dynamic load. When the tension reaches a certain range, the calculation of the cable track structure using classical cable theory is acceptable. The tests prove that the average maximum dynamic amplification factor of the deflection is small, generally no more than 1.2. However, when the vehicle speed reaches a certain value, the amplified factor will reach 2.0. If the moving loads increase, the dynamic amplification factor of dynamic deflection will also increase. The tension will change the rigidity of the structure and the vibration frequency; furthermore, the resonance speed will change at a certain tension. The vibration is noticeable when vehicles pass through at the resonance speed, and this negative impact on driving comfort requires the right velocity to avoid the resonance. The results demonstrate that more design details are required for the AERORail structure.
基金Projects(51308273,41372307,41272326)supported by the National Natural Science Foundation of ChinaProject(20090211110016)supported by Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(2010(A)06-b)supported by Science and Technology Fund of Yunan Provincial Communication Department,China
文摘Based on some assumptions,the dynamic governing equation of anchorage system is established.The calculation formula of natural frequency and the corresponding vibration mode are deduced.Besides,the feasibility of the theoretical method is verified by using a specific example combined with other methods.It is found that the low-order natural frequency corresponds to the first mode of vibration,and the high-order natural frequency corresponds to the second mode of vibration,while the third mode happens only when the physical and mechanical parameters of anchorage system meet certain conditions.With the increasing of the order of natural frequency,the influence on the dynamic mechanical response of anchorage system decreases gradually.Additionally,a calculating method,which can find the dangerous area of anchorage engineering in different construction sites and avoid the unreasonable design of anchor that may cause resonance,is proposed to meet the seismic precautionary requirements.This method is verified to be feasible and effective by being applied to an actual project.The study of basic dynamic features of anchorage system can provide a theoretical guidance for anchor seismic design and fast evaluation of anchor design scheme.
基金Project(2008ZHZX1A0502) supported by the Independence Innovation Achievements Transformation Crucial Special Program of Shandong Province,China
文摘A multi-domain nonlinear dynamic model of a proportional solenoid valve was presented.The electro-magnetic,mechanical and fluid subsystems of the valve were investigated,including their interactions.Governing equations of the valve were derived in the form of nonlinear state equations.By comparing the simulated and measured data,the simulation model is validated with a deviation less than 15%,which can be used for the structural design and control algorithm optimization of proportional solenoid valves.
基金Project(20080431380)supported by the National Postdoctoral Science Foundation,China
文摘Based on theory of variable-mass system thermodynamics, the dynamic mathematic models of each component of the horizontal steam-launch system were established, and by the numerical simulation of the system launching process, the thermodynamics and kinetics characteristics of the system with three valves of different flow characteristics were got. The simulation results show that the values of the peak-to-average ratios of dimensionless acceleration with the equal percentage valve, the linear valve and the quick opening valve are 1.355, 1.614 and 1.722, respectively, and the final values of the dimensionless velocities are 0.843, 0.957 and 1.0, respectively. In conclusion, the value of the dimensionless velocity with the equal percentage valve doesn't reach the set value of 0.90 when the dimensionless displacement is 0.82, while the system with the linear valve can meet the launching requirement, as well as the fluctuation range of dimensionless acceleration is less than that of the quick opening valve. Therefore, the system with the linear valve has the best performance among the three kinds of valves.
基金Projects(50935002, 11002039) supported by the National Natural Science Foundation of ChinaProject(HIT.KLOF.2009062) supported by Key Laboratory Opening Funding of Aerospace Mechanism and Control Technology,Chinasupport by "111 Project" (Grant No.B07018)
文摘The dynamic equivalent continuum modeling method of the mast which is based on energy equivalency principle was investigated. And three kinds of mast dynamic model were established, which were equivalent continuum model, finite element model and simulation model, respectively. The mast frequencies and mode shapes were calculated by these models and compared with each other. The error between the equivalent continuum model and the finite element model is less than 5% when the mast length is longer. Dynamic responses of the mast with different lengths are tested, the mode frequencies and mode shapes are compared with finite element model. The mode shapes match well with each other, while the frequencies tested by experiments are lower than the results of the finite element model, which reflects the joints lower the mast stiffness. The nonlinear dynamic characteristics are presented in the dynamic responses of the mast under different excitation force levels. The joint nonlinearities in the deployable mast are identified as nonlinear hysteresis contributed by the coulomb friction which soften the mast stiffness and lower the mast frequencies.