作战任务和平台资源的合理匹配是战役作战准备阶段的主要内容。考虑平台资源能力在作战过程中的损耗,在问题建模的过程中引入了资源能力的损耗系数,使得所建模型更加符合实际作战。提出了基于动态列表调度(dynamic list scheduling,DLS...作战任务和平台资源的合理匹配是战役作战准备阶段的主要内容。考虑平台资源能力在作战过程中的损耗,在问题建模的过程中引入了资源能力的损耗系数,使得所建模型更加符合实际作战。提出了基于动态列表调度(dynamic list scheduling,DLS)和遗传算法(genetic algorithm,GA)的模型求解方法,使用DLS选择处理的任务,使用GA为选定任务分配平台资源,给出了该方法具体的设计思路和流程。最后结合联合作战的战役算例,验证了所提方法的优越性和适用性。展开更多
针对联合作战环境下的装备资源精确保障协同规划问题,考虑以所有保障任务完成时间最短为目标,以保障任务的执行时序和资源需求、保障编组占用冲突,以及资源平台能力更新机制等复杂条件为约束,构建数学模型,提出了基于动态列表调度(Dynam...针对联合作战环境下的装备资源精确保障协同规划问题,考虑以所有保障任务完成时间最短为目标,以保障任务的执行时序和资源需求、保障编组占用冲突,以及资源平台能力更新机制等复杂条件为约束,构建数学模型,提出了基于动态列表调度(Dynamic List Scheduling,DLS)和自适应进化变异二进制蝙蝠算法(Adaptive Mutation Binary Bat Algorithm,AMBBA)的混合装备资源协同保障规划方法。通过动态列表调度选择当前执行保障的任务,在二进制蝙蝠算法寻优中引入自适应学习因子以平衡全局搜索和局部搜索能力,通过在当前可用资源集中搜索最优解为选定任务分配资源,以复杂地域联合作战为例仿真并验证规划效果,结果显示,所提方法可对大规模装备资源协同分配保障问题进行精确高效求解。展开更多
文摘作战任务和平台资源的合理匹配是战役作战准备阶段的主要内容。考虑平台资源能力在作战过程中的损耗,在问题建模的过程中引入了资源能力的损耗系数,使得所建模型更加符合实际作战。提出了基于动态列表调度(dynamic list scheduling,DLS)和遗传算法(genetic algorithm,GA)的模型求解方法,使用DLS选择处理的任务,使用GA为选定任务分配平台资源,给出了该方法具体的设计思路和流程。最后结合联合作战的战役算例,验证了所提方法的优越性和适用性。
文摘针对联合作战环境下的装备资源精确保障协同规划问题,考虑以所有保障任务完成时间最短为目标,以保障任务的执行时序和资源需求、保障编组占用冲突,以及资源平台能力更新机制等复杂条件为约束,构建数学模型,提出了基于动态列表调度(Dynamic List Scheduling,DLS)和自适应进化变异二进制蝙蝠算法(Adaptive Mutation Binary Bat Algorithm,AMBBA)的混合装备资源协同保障规划方法。通过动态列表调度选择当前执行保障的任务,在二进制蝙蝠算法寻优中引入自适应学习因子以平衡全局搜索和局部搜索能力,通过在当前可用资源集中搜索最优解为选定任务分配资源,以复杂地域联合作战为例仿真并验证规划效果,结果显示,所提方法可对大规模装备资源协同分配保障问题进行精确高效求解。