期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
基于动态主题情感模型的文本聚类算法
1
作者 胡萍 《吉林大学学报(理学版)》 北大核心 2025年第2期528-536,共9页
针对目前已有的相关主题模型中,对大众情感因素考虑不足,难以精准挖掘,同时对社交文本的实时动态演化考虑弱化了模型聚类能力的问题,通过在模型中增加情感层以提取社交文本情感极性特征,并引入先验分布函数,提出一种基于动态主题情感模... 针对目前已有的相关主题模型中,对大众情感因素考虑不足,难以精准挖掘,同时对社交文本的实时动态演化考虑弱化了模型聚类能力的问题,通过在模型中增加情感层以提取社交文本情感极性特征,并引入先验分布函数,提出一种基于动态主题情感模型的文本聚类算法.利用真实新冠疫情Twitter文本数据集进行实验,实验结果表明,该模型的性能优于基线模型,提高了情感特征区分度,使文本主题与对应的情感极性联合生成时间节点,进而使模型有处理时间演化的能力. 展开更多
关键词 动态主题情感模型 文本挖掘 情感标签 时间戳 文本聚类 困惑度
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部