期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
一种基于数据驱动的动态时序分类算法 被引量:2
1
作者 赵庶旭 张家祯 +1 位作者 王小龙 张占平 《重庆大学学报》 CAS CSCD 北大核心 2023年第7期63-74,共12页
针对物联网时序数据中存在的数据冗余现象和动态信息难以捕捉的问题,提出了一种基于数据驱动的动态时序分类算法。通过动态内部主元分析法(dynamic internal principal component analysis,DiPCA)提取传感设备采集的时间序列中的动态信... 针对物联网时序数据中存在的数据冗余现象和动态信息难以捕捉的问题,提出了一种基于数据驱动的动态时序分类算法。通过动态内部主元分析法(dynamic internal principal component analysis,DiPCA)提取传感设备采集的时间序列中的动态信息,实现降维及提炼动态信息的作用;利用麻雀搜索算法优化分类算法参数,强化支持向量机(support vector machines,SVM)算法性能并使其对含有shapelet局部特征的时序特征进行建模,最终构成双向演进算法框架,实现时序分类功能。利用UCR时序数据集和边缘计算模拟数据检验该算法的性能,结果表明,与基本算法相比,该算法的综合性能明显提高,并验证算法分类功能在仿真环境中的有效性与优越性。 展开更多
关键词 数据驱动 动态内部分析 shapelet 麻雀搜索算 支持向量机 时间序列分类
在线阅读 下载PDF
飞机复合材料结构损伤的预测方法 被引量:6
2
作者 崔建国 张文生 +2 位作者 蒋丽英 朴春雨 周志强 《材料科学与工程学报》 CAS CSCD 北大核心 2016年第5期755-760,共6页
针对复合材料结构损伤机理的复杂性,很难准确预测结构损伤状态,本文提出一种基于动态主元分析(DPCA)和最小二乘支持向量机(LS-SVM)相结合的复合材料结构损伤演化预测新方法,并针对复合材料结构损伤特性,采用疲劳振动试验进行结构损伤预... 针对复合材料结构损伤机理的复杂性,很难准确预测结构损伤状态,本文提出一种基于动态主元分析(DPCA)和最小二乘支持向量机(LS-SVM)相结合的复合材料结构损伤演化预测新方法,并针对复合材料结构损伤特性,采用疲劳振动试验进行结构损伤预测研究。首先,采用经验模态分解(EMD)方法对多传感器采集的复合材料结构健康信息进行自适应分解,得到不同传感器下的多个本征模态分量(IMF),并通过计算各阶IMF分量的奇异熵作为各传感器的特征信息;然后采用DPCA对多传感器的奇异熵进行降维融合,得到融合后的奇异熵特征,再对其采用距离形态相似度方法定义结构健康指数;最后将结构健康指数作为建模数据,创建LS-SVM预测模型,并通过预测模型对飞机复合材料结构健康指数进行预测,其预测结果直接反映了飞机复合材料结构的健康状态。试验验证表明,该方法可有效地实现飞机复合材料结构损伤预测效能,具有很好的工程应用价值。 展开更多
关键词 复合材料 结构损伤预测 动态主元分析法 最小二乘支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部