期刊文献+
共找到27篇文章
< 1 2 >
每页显示 20 50 100
基于动态主元分析的统计过程监视 被引量:23
1
作者 陈耀 王文海 孙优贤 《化工学报》 EI CAS CSCD 北大核心 2000年第5期666-670,共5页
针对时序相关观测数据 ,提出了一种动态主元分析过程 .仿真计算结果表明 ,过程观测数据的动态主元分析可看作是扰动“驱动”信号的提取过程 ,分析得到的主元变量实际上是驱动扰动的估计 .对CSTR过程的仿真监视研究 ,验证了基于动态主元... 针对时序相关观测数据 ,提出了一种动态主元分析过程 .仿真计算结果表明 ,过程观测数据的动态主元分析可看作是扰动“驱动”信号的提取过程 ,分析得到的主元变量实际上是驱动扰动的估计 .对CSTR过程的仿真监视研究 ,验证了基于动态主元分析的统计过程监视的有效性 . 展开更多
关键词 过程监视 统计过程控制 动态主元分析
在线阅读 下载PDF
基于改进动态主元分析在半实物仿真系统中的研究 被引量:1
2
作者 高强 常勇 《电子学报》 EI CAS CSCD 北大核心 2017年第3期565-569,共5页
为了实现数据驱动技术在工业中的实际应用,开发了以蒸馏塔作为被控对象的半实物仿真系统,将数据驱动方法应用到流程工业半实物仿真系统.针对动态主元分析方法存在的计算负荷大,计算效率低的问题,提出了一种改进动态主元分析方法,利用不... 为了实现数据驱动技术在工业中的实际应用,开发了以蒸馏塔作为被控对象的半实物仿真系统,将数据驱动方法应用到流程工业半实物仿真系统.针对动态主元分析方法存在的计算负荷大,计算效率低的问题,提出了一种改进动态主元分析方法,利用不可区分度和交叉程度去除众多变量中的不相关变量或相关度较小的变量,减少数据量.针对系统中的典型故障,数据驱动方法能够检测出半实物仿真系统中的异常,而且与传统动态主元分析比较,改进算法降低漏报率和误报率,提高诊断可靠性,并且能及时检测出生产过程的微小故障. 展开更多
关键词 数据驱动 蒸馏塔 半实物仿真 动态主元分析 不可区分度
在线阅读 下载PDF
基于多级动态主元分析的电熔镁炉异常工况诊断 被引量:3
3
作者 刘强 孔德志 郎自强 《自动化学报》 EI CAS CSCD 北大核心 2021年第11期2570-2577,共8页
电熔镁熔炼过程中的异常工况(如半熔化工况)直接影响产品质量、威胁人员和生产安全,有必要及时诊断.但与异常直接相关的超高温熔池温度(>2850℃)难以利用温度传感器检测,目前现场主要依靠工人在定期巡检时人眼观察炉壁来诊断,工作强... 电熔镁熔炼过程中的异常工况(如半熔化工况)直接影响产品质量、威胁人员和生产安全,有必要及时诊断.但与异常直接相关的超高温熔池温度(>2850℃)难以利用温度传感器检测,目前现场主要依靠工人在定期巡检时人眼观察炉壁来诊断,工作强度大、安全度低、诊断不及时.针对上述问题,本文提出一种炉体动态图像驱动的电熔镁炉异常工况实时诊断方法.结合电熔镁炉熔炼各区域温度分布的空间特征、正常工况下熔炼温度变化和水雾扰动引入的图像时序特征、以及异常工况下温度异常区域持续发亮扩大的特征,在对炉体动态图像进行空间多级划分的基础上,提出了一种多级动态主元分析(Multi-level dynamic principal component analysis,MLDPCA)动态图像分块建模方法.在此基础上,提出基于MLDPCA的逐级诊断方法与基于贡献图的异常定位方法.最后,采用某电熔镁生产现场的实际图像进行方法验证,结果表明了所提方法的有效性. 展开更多
关键词 电熔镁炉 异常工况诊断 多级动态主元分析 时序图像建模
在线阅读 下载PDF
基于局部近邻标准化和动态主元分析的故障检测策略 被引量:13
4
作者 张成 郭青秀 +1 位作者 冯立伟 李元 《计算机应用》 CSCD 北大核心 2018年第9期2730-2734,共5页
针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新... 针对工业过程的动态和多模态特性,提出一种基于局部近邻标准化(LNS)和动态主元分析(DPCA)相结合的故障检测方法(LNS-DPCA)。首先,在训练数据集中寻找样本的K近邻集;然后,应用K近邻集的均值与标准差对当前样本进行标准化处理;最后,在新的数据集中应用DPCA方法确定T^2和SPE控制限进行故障检测。LNS方法能够消除过程的多模态特征,使得标准化后数据近似服从多元高斯分布,且保持过程离群点偏离正常样本轨迹;而结合DPCA方法则能够提高对具有动态特性过程的监视性能。利用数值例子和青霉素发酵过程进行仿真,并将测试结果与主元分析法(PCA)、DPCA、K近邻故障检测(FD-KNN)等方法进行对比分析,验证了LNS-DPCA方法的有效性。 展开更多
关键词 局部近邻标准化 动态主元分析 多模态 青霉素发酵过程 故障检测
在线阅读 下载PDF
基于混合动态主元分析的故障检测方法 被引量:12
5
作者 石怀涛 刘建昌 +2 位作者 丁晓迪 谭帅 王雪梅 《控制工程》 CSCD 北大核心 2012年第1期148-151,共4页
针对基于动态主元分析的故障检测方法存在的主元个数较多以及计算效率低等问题,本文提出基于混合动态主元分析(Hybrid Dynamic Principal Component Analysis,HDP-CA)的复杂过程故障检测方法。该方法采用分步策略消除数据之间的自相关... 针对基于动态主元分析的故障检测方法存在的主元个数较多以及计算效率低等问题,本文提出基于混合动态主元分析(Hybrid Dynamic Principal Component Analysis,HDP-CA)的复杂过程故障检测方法。该方法采用分步策略消除数据之间的自相关和互相关性,提高了故障检测的精度和效率。对TE过程典型故障和热连轧过程中断带故障检测结果表明:HDPCA方法提取的主元个数少于DPCA方法提取的主元个数。并且,基于HDPCA的T2和SPE统计量的检测性能和检测精度都由于基于DPCA的统计量。因此,本文提出的方法可以准确有效地检测出故障。 展开更多
关键词 特征提取 混合动态-独立分析方法 活套故障 故障诊断
在线阅读 下载PDF
优化动态核主元分析的工业过程故障监测方法 被引量:1
6
作者 杨芳 王亚君 沈亚慧 《实验室研究与探索》 CAS 北大核心 2024年第1期6-10,19,共6页
针对现代生产工业过程中数据的非线性多模态特征,提出了一种基于人工大猩猩部队优化动态核主元分析(GTO-DKPCA)的故障监测方法。利用自回归移动平均时间序列模型和核主成分分析(KPCA)方法构建DKPCA模型,对过程各阶段的批次数据进行DKPC... 针对现代生产工业过程中数据的非线性多模态特征,提出了一种基于人工大猩猩部队优化动态核主元分析(GTO-DKPCA)的故障监测方法。利用自回归移动平均时间序列模型和核主成分分析(KPCA)方法构建DKPCA模型,对过程各阶段的批次数据进行DKPCA处理。通过正常数据和故障数据特征构建自适应度函数,利用人工大猩猩部队优化算法对DKPCA核参数进行优化,以发现最优的非线性特征;通过计算各时间点的霍特林统计量T2和平方预测误差(SPE)统计量进行故障监测。青霉素发酵过程故障监测结果表明,GTO-DKPCA方法比多向核主元分析(MKPCA)和多动态核主元分析(BDKPCA)有更好的监测效果,适应性和准确性更高。 展开更多
关键词 动态分析 人工大猩猩部队优化算法 故障监测 青霉素发酵
在线阅读 下载PDF
基于动态受控主元分析模型的故障检测
7
作者 陈硕 栾小丽 刘飞 《控制工程》 CSCD 北大核心 2024年第7期1280-1285,共6页
为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程... 为了提高故障检测准确率,提出了基于动态受控主元分析(dynamic controlled principal component analysis,DCPCA)模型的故障检测方法。首先,利用DCPCA提取动态受控主元(dynamic controlled principal component,DCPC),所得DCPC包含过程的自回归特性和与控制输入之间的动态因果关系,使得构建的DCPCA模型更精确。然后,针对传统方法只对过程变量进行静态空间结构的故障检测,忽略了动态特性的问题,基于DCPCA模型适时应用检测综合指标,对系统进行静态重构误差和动态模型误差的双重检测,使得检测结果更全面。最后,基于田纳西-伊斯曼(Tennessee-Eastman,TE)过程的仿真结果验证了所提方法的可行性和有效性。 展开更多
关键词 动态受控分析 故障检测 综合指标 静态重构误差 动态模型误差
在线阅读 下载PDF
基于动态核主元分析的电缆接头故障检测方法 被引量:12
8
作者 张起 李学渊 +1 位作者 李鹏 曹敏 《大连理工大学学报》 EI CAS CSCD 北大核心 2020年第3期300-305,共6页
针对环网柜电缆接头故障发生前后时刻的时间相关性较强,且故障的发生是一个非线性过程,将动态核主元分析应用于环网柜电缆接头故障检测并建立故障检测模型.该模型可以在解决非线性变量难以分离的同时提取变量之间的动态自相关特性,并通... 针对环网柜电缆接头故障发生前后时刻的时间相关性较强,且故障的发生是一个非线性过程,将动态核主元分析应用于环网柜电缆接头故障检测并建立故障检测模型.该模型可以在解决非线性变量难以分离的同时提取变量之间的动态自相关特性,并通过建立动态核主元在线监测模型及时检测故障的发生.最后对采集的环网柜电缆接头故障数据进行实验分析,实验结果证明所提方法能有效地检测出环网柜电缆接头故障的发生,且检测精度和误报率均优于之前的算法. 展开更多
关键词 动态分析(DKPCA) 非线性 电缆接头 故障检测
在线阅读 下载PDF
一种基于改进型自适应滑动窗算法的主元分析 被引量:2
9
作者 周奇才 黄克 +1 位作者 赵炯 熊晓磊 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2012年第3期384-390,共7页
针对工业过程时变的特点,基于自适应滑动窗的主元分析算法由于能依据采集数据时时更新模型,因此能有效提高建模精度和诊断准确度。但是该算法的实现基于两个假设:(1)假定用于更新模型的数据是正常稳定过程中采集而得。(2)假定采集数据... 针对工业过程时变的特点,基于自适应滑动窗的主元分析算法由于能依据采集数据时时更新模型,因此能有效提高建模精度和诊断准确度。但是该算法的实现基于两个假设:(1)假定用于更新模型的数据是正常稳定过程中采集而得。(2)假定采集数据时序无关。由于算法没有辨识功能,极容易用携带故障信息的数据来更新系统模型,后果可想而知。据此本文提出计算相对变化量用于区分数据正常与否。实践证明大部分工业过程存在时序相关性,而滑动窗算法属于常规静态建模,因此应该考虑动态主元分析。综上,本文提出动态主元分析的关键参数——时滞参数z来计算和改进自适应滑动窗算法。最后经过仿真测试验证了辨识算法的有效性。 展开更多
关键词 过程监控 自适应滑动窗 动态主元分析 稳定过程辨识
在线阅读 下载PDF
基于动态核主元分析的大功率LED阵列动态光源在线状态观测与故障诊断 被引量:2
10
作者 王晨 饶欢乐 +2 位作者 李纪宾 钱依凡 洪哲扬 《应用光学》 CAS CSCD 北大核心 2021年第4期728-734,共7页
大功率LED阵列动态光源工作过程中光电热参数具有不确定性和时变时滞非线性特点,利用动态核主元分析方法(DKPCA)对大功率LED阵列动态光源进行在线状态观测与故障诊断能有效地捕捉观测数据的非线性和相关性特征,根据历史数据的主元特征... 大功率LED阵列动态光源工作过程中光电热参数具有不确定性和时变时滞非线性特点,利用动态核主元分析方法(DKPCA)对大功率LED阵列动态光源进行在线状态观测与故障诊断能有效地捕捉观测数据的非线性和相关性特征,根据历史数据的主元特征计算出的统计量阈值和在线数据的统计特征实现故障检测,利用重构贡献图法实现故障的分离。仿真实验表明,对大功率LED阵列动态光源典型的传感器和执行器故障进行有效监测和诊断相对于核主元分析方法对故障更为敏感,故障检测率最高提高了7.5%,误检率下降了4.2%。 展开更多
关键词 大功率LED阵列 动态分析 在线监测 故障诊断
在线阅读 下载PDF
基于动态结构保持主元分析的故障检测方法
11
作者 张妮 田学民 蔡连芳 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2013年第2期170-175,共6页
为充分利用表征过程运行工况的数据特征信息,提高化工过程的故障检测性能,提出一种基于动态结构保持主元分析(DSPPCA)的过程故障检测方法。首先对原始数据采用变量相关性分析建立自回归模型,构建包含动态特征的数据集,进一步综合考虑主... 为充分利用表征过程运行工况的数据特征信息,提高化工过程的故障检测性能,提出一种基于动态结构保持主元分析(DSPPCA)的过程故障检测方法。首先对原始数据采用变量相关性分析建立自回归模型,构建包含动态特征的数据集,进一步综合考虑主元分析法(PCA)和局部线性嵌入(LLE)流形学习算法中数据点之间的近邻关系,融合得出新的目标函数,同时,运用局部线性回归的方法获得高维样本的嵌入映射,特征提取后在特征空间和残差空间分别构造监控统计量进行故障检测。Swiss-roll数据集的降维结果及TE过程的仿真研究结果表明,DSPPCA算法可以取得较好的特征提取效果,具有较高的故障检测性能。 展开更多
关键词 动态结构保持分析 流形学习 相关性分析 特征提取 故障检测
在线阅读 下载PDF
基于动态PCA与改进SVM的航空发动机故障诊断 被引量:13
12
作者 崔建国 严雪 +3 位作者 蒲雪萍 齐义文 蒋丽英 师建强 《振动.测试与诊断》 EI CSCD 北大核心 2015年第1期94-99,190,共6页
为了对航空发动机进行高效地故障诊断,确保飞机的飞行安全,提出了一种基于动态主元分析和改进支持向量机的航空发动机智能故障诊断方法。该方法结合了动态主元分析(principal component analysis,简称PCA)在特征提取方面和改进支持向... 为了对航空发动机进行高效地故障诊断,确保飞机的飞行安全,提出了一种基于动态主元分析和改进支持向量机的航空发动机智能故障诊断方法。该方法结合了动态主元分析(principal component analysis,简称PCA)在特征提取方面和改进支持向量机(support vector machine,简称SVM)在故障诊断方面的优势。动态PCA方法对所涉及的过程变量进行去噪、降维、消除相关性等预处理和特征提取,采用改进SVM方法将所得的特征向量进行故障诊断诊断。所提出的方法可解决航空发动机模型精度和传感器测量参数有限情况下的滑油系统故障诊断精度差、效率低和易误诊、漏诊等问题。以某型真实航空发动机滑油系统为例,对提出方法的有效性进行试验验证。结果表明,采用的动态PCA和改进SVM故障诊断方法能有效提高故障诊断正确率,实现航空发动机滑油系统故障诊断的效能,具有较好的应用价值与前景。 展开更多
关键词 航空发动机 滑油系统 动态主元分析 改进支持向量机 故障诊断
在线阅读 下载PDF
工业流化床反应器结块监视的动态PCA方法 被引量:12
13
作者 刘育明 梁军 钱积新 《化工学报》 EI CAS CSCD 北大核心 2004年第9期1546-1549,共4页
Dynamic principal component analysis(DPCA) is an extension of conventional principal component analysis(PCA) for dealing with multivariate dynamic data serially correlated in time.Based on the fact that the measured v... Dynamic principal component analysis(DPCA) is an extension of conventional principal component analysis(PCA) for dealing with multivariate dynamic data serially correlated in time.Based on the fact that the measured variables in relation to chunk monitoring of the industrial fluidized-bed reactor are highly cross-correlated and auto-correlated, this paper presents a practical strategy for chunk monitoring by adopting DPCA in order to overcome the shortcomings of the conventional method.After introducing the basic principle of DPCA, both how to determine the time lagged length of data matrix and how to calculate the nonparametric control limits when the dynamic data are not subject to the assumption of independently identically distribution(IID) were discussed.An appropriate DPCA model based on the real data from a industrial fluidized-bed reactor was built, with parallel analysis and empirical reference distribution(ERD)method to select time lagged length and control limits, respectively.During data pretreatment, data smoothing was used to reduce noise and the serial correlations to some degree.The simulation test results showed the effectiveness of the DPCA based method. 展开更多
关键词 流化床反应器 结块监视 动态主元分析 控制限
在线阅读 下载PDF
废水处理系统的动态过程监测 被引量:7
14
作者 刘鸿斌 陈琴 +1 位作者 张昊 杨冲 《中国造纸》 CAS 北大核心 2019年第2期46-53,共8页
传统多元统计方法中,独立元分析(ICA)相较于主元分析(PCA)可有效提取信息的主要特征,保留更多原始数据。针对连续化生产所带来的动态特性,提出动态独立元分析(DICA)、动态主元分析(DPCA),分别用来提升ICA和PCA的过程监测能力。结果表明... 传统多元统计方法中,独立元分析(ICA)相较于主元分析(PCA)可有效提取信息的主要特征,保留更多原始数据。针对连续化生产所带来的动态特性,提出动态独立元分析(DICA)、动态主元分析(DPCA),分别用来提升ICA和PCA的过程监测能力。结果表明,针对废水监测过程中偏移、漂移和完全失效3种传感器故障,DICA方法相较ICA的故障检测率在SPE统计量下分别提高了7. 15%、18. 58%和12. 86%,故障检测率高达88. 57%、84. 29%及82. 86%; DPCA故障检测在SPE统计量下相比于PCA也有一定提升,最高提高了28. 57%,但其故障检测率要远低于DICA,这表明DICA方法对过程故障检测有较好的效果。 展开更多
关键词 废水处理过程 故障检测 动态过程 动态主元分析 动态独立分析
在线阅读 下载PDF
间歇过程动态潜结构阶段划分与在线监控 被引量:4
15
作者 胡磊 刘强 +1 位作者 吴永建 范自柱 《控制理论与应用》 EI CAS CSCD 北大核心 2022年第2期307-316,共10页
阶段划分是间歇过程准确建模和有效监控的前提.针对传统阶段划分方法未考虑间歇过程的动态性造成阶段划分不准确、影响监控精度,且具有参数选择难、鲁棒性差的局限,提出一种基于动态潜结构的动态间歇过程阶段划分与在线监控方法.首先,... 阶段划分是间歇过程准确建模和有效监控的前提.针对传统阶段划分方法未考虑间歇过程的动态性造成阶段划分不准确、影响监控精度,且具有参数选择难、鲁棒性差的局限,提出一种基于动态潜结构的动态间歇过程阶段划分与在线监控方法.首先,对间歇过程三维张量数据沿变量方向展开,并增加时滞变量构建增广矩阵来提取过程动态关系;然后,以增广矩阵作为输入,定义一种新的基于解释方差变化的合并代价函数,衡量不同子序列之间的动态潜结构相似度;利用上述动态潜结构相似度的衡量标准,提出基于自底向上启发式搜索策略的动态间歇过程阶段划分方法;最后,对划分得到的各阶段分别建立基于动态主元分析的子阶段模型和统计指标来实现在线监控.采用青霉素补料分批发酵过程数据开展实验研究,结果表明了所提方法的有效性和优越性. 展开更多
关键词 间歇过程 过程监控 动态主元分析 相似性度量
在线阅读 下载PDF
一种基于数据驱动的动态时序分类算法 被引量:2
16
作者 赵庶旭 张家祯 +1 位作者 王小龙 张占平 《重庆大学学报》 CAS CSCD 北大核心 2023年第7期63-74,共12页
针对物联网时序数据中存在的数据冗余现象和动态信息难以捕捉的问题,提出了一种基于数据驱动的动态时序分类算法。通过动态内部主元分析法(dynamic internal principal component analysis,DiPCA)提取传感设备采集的时间序列中的动态信... 针对物联网时序数据中存在的数据冗余现象和动态信息难以捕捉的问题,提出了一种基于数据驱动的动态时序分类算法。通过动态内部主元分析法(dynamic internal principal component analysis,DiPCA)提取传感设备采集的时间序列中的动态信息,实现降维及提炼动态信息的作用;利用麻雀搜索算法优化分类算法参数,强化支持向量机(support vector machines,SVM)算法性能并使其对含有shapelet局部特征的时序特征进行建模,最终构成双向演进算法框架,实现时序分类功能。利用UCR时序数据集和边缘计算模拟数据检验该算法的性能,结果表明,与基本算法相比,该算法的综合性能明显提高,并验证算法分类功能在仿真环境中的有效性与优越性。 展开更多
关键词 数据驱动 动态内部分析 shapelet 麻雀搜索算法 支持向量机 时间序列分类
在线阅读 下载PDF
基于DPCA-RBF网络的工业流化床乙烯气相聚合过程的软测量研究 被引量:6
17
作者 杨敏 胡斌 +2 位作者 费正顺 郑平友 梁军 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第3期481-487,共7页
工业流化床乙烯气相聚合反应是一个复杂的生产过程,具有高维、非线性、动态性和强噪声特点,质量变量难以直接测量。为解决关键质量变量在线软测量问题,首先采用动态主元分析(DPCA)的方法对过程变量提取主元,消除了过程变量之间的相关性... 工业流化床乙烯气相聚合反应是一个复杂的生产过程,具有高维、非线性、动态性和强噪声特点,质量变量难以直接测量。为解决关键质量变量在线软测量问题,首先采用动态主元分析(DPCA)的方法对过程变量提取主元,消除了过程变量之间的相关性、噪声并体现了建模数据的动态特性;其次对提取出的主元变量采用径向基函数网络(RBF)建模的方法,建立主元变量和质量变量之间的网络结构。对纯函数数据以及工业现场数据分别进行PCA-RBF模型及DPCA-RBF模型的仿真研究,研究结果表明,当建模数据存在非线性、动态性、噪声以及相关性等特性时,DPCA-RBF建模方法比PCA-RBF及单纯的RBF建模方法更优越。因此,DPCA-RBF建模方法较适合运用在工业实时变量的软测量中。 展开更多
关键词 乙烯气相聚合 动态主元分析 RBF神经网络 软测量
在线阅读 下载PDF
基于DPCA-BP神经网络的中长期电力负荷预测方法 被引量:9
18
作者 张石 张瑞友 汪定伟 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第4期482-485,共4页
针对PCA-神经网络预测方法解决预测问题时,忽视数据自相关性而造成的预测结果难以满足实际工程要求精度的研究现状,建立了预测数据的增广矩阵.通过计算前l时刻数据确定增广矩阵的维数,并把得到增广后的预测数据作为BP神经网络的输入变量... 针对PCA-神经网络预测方法解决预测问题时,忽视数据自相关性而造成的预测结果难以满足实际工程要求精度的研究现状,建立了预测数据的增广矩阵.通过计算前l时刻数据确定增广矩阵的维数,并把得到增广后的预测数据作为BP神经网络的输入变量,建立了基于DPCA-BP神经网络的预测模型,给出了模型结构.该模型能有效地去除自变量系统中与因变量无关的数据信息,增加自变量系统中数据的自相关性.算例比较分析表明,所建立模型的模型成分解释性增强,预测精度提高,预测效果优于PCA-BP神经网络方法. 展开更多
关键词 动态主元分析 数据拟合 BP神经网络 负荷预测 电力系统
在线阅读 下载PDF
飞机复合材料结构损伤的预测方法 被引量:6
19
作者 崔建国 张文生 +2 位作者 蒋丽英 朴春雨 周志强 《材料科学与工程学报》 CAS CSCD 北大核心 2016年第5期755-760,共6页
针对复合材料结构损伤机理的复杂性,很难准确预测结构损伤状态,本文提出一种基于动态主元分析(DPCA)和最小二乘支持向量机(LS-SVM)相结合的复合材料结构损伤演化预测新方法,并针对复合材料结构损伤特性,采用疲劳振动试验进行结构损伤预... 针对复合材料结构损伤机理的复杂性,很难准确预测结构损伤状态,本文提出一种基于动态主元分析(DPCA)和最小二乘支持向量机(LS-SVM)相结合的复合材料结构损伤演化预测新方法,并针对复合材料结构损伤特性,采用疲劳振动试验进行结构损伤预测研究。首先,采用经验模态分解(EMD)方法对多传感器采集的复合材料结构健康信息进行自适应分解,得到不同传感器下的多个本征模态分量(IMF),并通过计算各阶IMF分量的奇异熵作为各传感器的特征信息;然后采用DPCA对多传感器的奇异熵进行降维融合,得到融合后的奇异熵特征,再对其采用距离形态相似度方法定义结构健康指数;最后将结构健康指数作为建模数据,创建LS-SVM预测模型,并通过预测模型对飞机复合材料结构健康指数进行预测,其预测结果直接反映了飞机复合材料结构的健康状态。试验验证表明,该方法可有效地实现飞机复合材料结构损伤预测效能,具有很好的工程应用价值。 展开更多
关键词 复合材料 结构损伤预测 动态主元分析 最小二乘支持向量机
在线阅读 下载PDF
BDPCA在线过程监测方法
20
作者 肖应旺 姚美银 《控制工程》 CSCD 北大核心 2009年第2期133-137,147,共6页
针对基于多向主元分析(Multiway Principal Component Analysis,MPCA)的方法在批过程故障监测中以样本观测相互独立作为假设前提条件,没有考虑到时间序列相关性的影响及需要对新批次未反应完的数据进行预估的缺陷,提出一种批过程动态主... 针对基于多向主元分析(Multiway Principal Component Analysis,MPCA)的方法在批过程故障监测中以样本观测相互独立作为假设前提条件,没有考虑到时间序列相关性的影响及需要对新批次未反应完的数据进行预估的缺陷,提出一种批过程动态主元分析(Batch Dynamic PCA,BDPCA)在线监测方法。该方法采用时滞变量将过程的静态和动态特征相结合,有效地去除了测量变量时间序列的自相关关系,并通过时滞窗口提供了在线监测方案,避免了对新批次未反应完的数据进行预估的需要,提出确定时滞变量的算法。将BDPCA应用于β-甘露聚糖酶发酵批过程的仿真监测,与移动窗多向主元分析(Moving Window MPCA,MWMPCA)法相比,仿真结果表明该方法能够更精确地对过程故障行为进行描述,具有良好的准确性和实时性。 展开更多
关键词 批过程动态主元分析 时滞变量 在线监测 β-甘露聚糖酶发酵批过程
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部