期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
应用档案精英学习和反向学习的多目标进化算法 被引量:22
1
作者 谢承旺 王志杰 夏学文 《计算机学报》 EI CSCD 北大核心 2017年第3期757-772,共16页
现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning ... 现实中的多目标优化问题日益复杂,对多目标优化算法提出了新的挑战.受混合多目标优化算法的启发,该文提出了一种应用档案精英学习和反向学习的多目标进化算法(Multi-objective Evolutionary Algorithm Based on Archive-Elite Learning and Opposition-based Learning,AOL-MOEA)以解决困难的多目标优化问题.AOLMOEA算法利用档案精英学习算子增强算法全局搜索能力,促进算法较快收敛;运用动态一般反向学习机制代替变异算子以增加种群逃逸局部极值的机会;使用3-点最短路径方法维持解群的多样性.AOL-MOEA算法与另外5种代表性多目标优化算法在12个基准多目标测试函数上进行性能比较,实验结果表明:AOL-MOEA算法在收敛性、多样性和稳定性等方面均优于或部分优于其他的对比算法. 展开更多
关键词 档案精英学习 动态一般反向学习 3-点最短路径 多目标进化算法
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部