The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthes...The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthesis conditions. The re- actants diffused from the bulk gas phase to the external surface of the pellet, and then the reactants diffused through the wax inside the pellet and reacted on the internal surface formed along the pore passages of the pellet. On the basis of reaction kinetics and double a-ASF product distribution model, a diffusion and reaction model of catalyst pellet was established. The effects of diffusion and reaction interaction in a catalyst pellet, the bulk temperature, the reaction pressure and the pellet size on the reactivity were further investigated. The relationship between the internal diffusion effectiveness factor of spherical catalyst pellet and the Thiele modulus were also discussed. The bulk temperature and pellet size have significant effects on the reactivity, while the pressure shows only a slight influence on the reactivity. The internal diffusion effectiveness factor decreases with an increasing Thiele modulus.展开更多
Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential...Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). Oxidation kinetic parameters were further investigated by model-fitting methods. The test results showed that the oxidation of spent catalysts was a quite mild process, while coal and coal char experienced sharp weight loss during oxidation. The temperature for commencement and termination of oxidation increased in the following order: coal〈coal char〈spent catalysts, and the oxidation of the three tested materials displayed a self-catalytic nature, with their largest oxidation rate appearing at a weight percent of 24.96%, 34.21% and 57.93%, respectively. The oxidation of spent catalysts obeyed a random nucleation model for the first-order reaction, with Ea=206.13 kJ/mol and lgA=10.10, and the oxidation of coal could be a diffusion-controlled reaction mechanism, with Ea=161.61 kJ/mol and lgA=7.74, while the oxidation of coal char also obeyed a random nucleation model for the first-order reaction, with Ea= 149.36 k J/mol and lgA=7.89.展开更多
Isoamylene from the Fischer-Tropsch syncrude can be transformed to valuable fuel oxygenate additives through an equilibrium limited etherification reaction with methanol. A reactive distillation process is established...Isoamylene from the Fischer-Tropsch syncrude can be transformed to valuable fuel oxygenate additives through an equilibrium limited etherification reaction with methanol. A reactive distillation process is established to increase isoamylene conversion. Facing the challenge of improving product purity at the same time, an equilibrium stage model based design methodology is proposed and illustrated step-by-step for converting the Fischer-Tropsch C_5 olefins to tert-amyl methyl ether(TAME) process by using Aspen Plus. Under the guide of the proposed methodology, the design leads to a TAME product purity of higher than 95% and an isoamylene conversion of higher than 90%. The etherification kinetics over Amberlyst 35 is also studied within a temperature range of 60 ℃ to 75 ℃ to shed more light on the feasibility of process development. The methodology provides an effective reactive distillation column design to achieve the target reactant conversion and product purity simultaneously.展开更多
基金Financial support from the National Basic Research Program of China(973 Program,2010CB736203)
文摘The diffusion and reaction phenomenon in a Fe-based catalyst pellet for Fischer-Tropsch synthesis was studied. It was considered that the pores of catalyst pellets were full of liquid wax under Fischer-Tropsch synthesis conditions. The re- actants diffused from the bulk gas phase to the external surface of the pellet, and then the reactants diffused through the wax inside the pellet and reacted on the internal surface formed along the pore passages of the pellet. On the basis of reaction kinetics and double a-ASF product distribution model, a diffusion and reaction model of catalyst pellet was established. The effects of diffusion and reaction interaction in a catalyst pellet, the bulk temperature, the reaction pressure and the pellet size on the reactivity were further investigated. The relationship between the internal diffusion effectiveness factor of spherical catalyst pellet and the Thiele modulus were also discussed. The bulk temperature and pellet size have significant effects on the reactivity, while the pressure shows only a slight influence on the reactivity. The internal diffusion effectiveness factor decreases with an increasing Thiele modulus.
文摘Oxidation of coke deposited on spent catalytic cracking catalysts was compared with that of coal and coal char via the non-isothermal oxidation means, i.e. the thermal-gravimetric analysis (TGA) and the differential thermal analysis (DTA). Oxidation kinetic parameters were further investigated by model-fitting methods. The test results showed that the oxidation of spent catalysts was a quite mild process, while coal and coal char experienced sharp weight loss during oxidation. The temperature for commencement and termination of oxidation increased in the following order: coal〈coal char〈spent catalysts, and the oxidation of the three tested materials displayed a self-catalytic nature, with their largest oxidation rate appearing at a weight percent of 24.96%, 34.21% and 57.93%, respectively. The oxidation of spent catalysts obeyed a random nucleation model for the first-order reaction, with Ea=206.13 kJ/mol and lgA=10.10, and the oxidation of coal could be a diffusion-controlled reaction mechanism, with Ea=161.61 kJ/mol and lgA=7.74, while the oxidation of coal char also obeyed a random nucleation model for the first-order reaction, with Ea= 149.36 k J/mol and lgA=7.89.
基金financial support from the National High Technology Research and Development Program 863(2011AA05A204)National Natural Science Foundation of China(U1361202)
文摘Isoamylene from the Fischer-Tropsch syncrude can be transformed to valuable fuel oxygenate additives through an equilibrium limited etherification reaction with methanol. A reactive distillation process is established to increase isoamylene conversion. Facing the challenge of improving product purity at the same time, an equilibrium stage model based design methodology is proposed and illustrated step-by-step for converting the Fischer-Tropsch C_5 olefins to tert-amyl methyl ether(TAME) process by using Aspen Plus. Under the guide of the proposed methodology, the design leads to a TAME product purity of higher than 95% and an isoamylene conversion of higher than 90%. The etherification kinetics over Amberlyst 35 is also studied within a temperature range of 60 ℃ to 75 ℃ to shed more light on the feasibility of process development. The methodology provides an effective reactive distillation column design to achieve the target reactant conversion and product purity simultaneously.