Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach t...Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.展开更多
In the analysis of the system of anchoring bar and wall rock in small strain and longitudinal vibration dynamic response, the influence of the cement grouting as well as the rock layer on the anchor bar can be evaluat...In the analysis of the system of anchoring bar and wall rock in small strain and longitudinal vibration dynamic response, the influence of the cement grouting as well as the rock layer on the anchor bar can be evaluated as the two kinds of parameters: the dynamic stiffness and the damp, which are the vital reference of the anchorage quality. Based on the analytic solution to the dynamic equation of the integrated anchor bar, the new approach which combines genetic algorithm and the toolbox of Matlab is applied to solve the problem of multi-parameters reverse deduction for integrated anchorage system in dynamic testing. Using the traits of the self-organizing, self-adapting and the fast convergence speed of the genetic algorithm, the optimum of all possible solutions to dynamic parameters is obtained by calculating the project instances. Examples show that the method presented in this paper is effective and reliable.展开更多
基金supported by Fund of National Science & Technology monumental projects under Grants No.61105015,NO.61401239,NO.2012-364-641-209
文摘Foreground detection is a fundamental step in visual surveillance.However,accurate foreground detection is still a challenging task especially in dynamic backgrounds.In this paper,we present a nonparametric approach to foreground detection in dynamic backgrounds.It uses a history of recently pixel values to estimate background model.Besides,the adaptive threshold and spatial coherence are introduced to enhance robustness against false detections.Experimental results indicate that our approach achieves better performance in dynamic backgrounds compared with several approaches.
基金Funded by the Natural Science Foundation of China (50378096) and Key Technology Item of Education Ministry (03138).
文摘In the analysis of the system of anchoring bar and wall rock in small strain and longitudinal vibration dynamic response, the influence of the cement grouting as well as the rock layer on the anchor bar can be evaluated as the two kinds of parameters: the dynamic stiffness and the damp, which are the vital reference of the anchorage quality. Based on the analytic solution to the dynamic equation of the integrated anchor bar, the new approach which combines genetic algorithm and the toolbox of Matlab is applied to solve the problem of multi-parameters reverse deduction for integrated anchorage system in dynamic testing. Using the traits of the self-organizing, self-adapting and the fast convergence speed of the genetic algorithm, the optimum of all possible solutions to dynamic parameters is obtained by calculating the project instances. Examples show that the method presented in this paper is effective and reliable.