The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuu...The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuum environment(VE:i.e.,far from free surface),which is of special importance in engineering practice.Several precise laboratory tests(i.e.,split Hopkinson pressure bar test)on marble samples in both AE and VE were performed to investigate physical and dynamic mechanical behaviors of marble after heat treatment(25℃ to 900℃)in AE and VE.The tests results demonstrate that related properties of marble could be divided into three different stages by corresponding critical temperatures of 300℃ and 600℃,at which heat damage factors are 0.29(0.30)and 0.88(0.92)in VE(AE),respectively.The thermal damage developes more fully in AE than in VE.The thermal environment plays an important role,especially in Stage 3.Specifically,a conspicuous difference(greater than 20%)between AE and VE occurs in corresponding dynamic strength and the anti-deformation capacities of tested marble specimen.The influence of heat damage of rock is very important and valuable in engineering practice,particularly when the temperature is very high(greater than 600℃).展开更多
The feasibility study of the AlCl(g) generated by Al_2O-AlCl_2-C system under vacuum was carried out by thermodynamic analysis and CASTEP package of the Material Studio program which was based on density functional th...The feasibility study of the AlCl(g) generated by Al_2O-AlCl_2-C system under vacuum was carried out by thermodynamic analysis and CASTEP package of the Material Studio program which was based on density functional theory(DFT) formalism. Thermodynamic calculations indicate that Al Cl and CO molecules can be formed under conditions of temperature 1760 K and the pressure of 60 Pa. The interaction of Al_2O and AlCl_2 with C shows that the chemical adsorption of Al_2O and AlCl_2 does take place on C(001) crystal plane, and at the same time, new chemical bond is formed between Al atom in Al_2O and Cl atoms from one of the Al—Cl bonds in AlCl_2. The results, after 1.25 ps dynamics simulation, indicate that adsorbed Al Cl molecules are generated and CO molecule will be formed in this system, and they will escape from C(001) surface after a longer period of dynamic simulation time. It means that the reaction of Al_2O and AlCl_2 with C can be carried out under given constraint condition.展开更多
基金Projects(51579239,42077240,51979280)supported by the National Natural Science Foundation of China。
文摘The dynamic mechanical properties of rock specimens after thermal treatment in the air-filled environment(AE:i.e.,at the free surface)have been extensively investigated,yet they are rarely estimated in the quasi-vacuum environment(VE:i.e.,far from free surface),which is of special importance in engineering practice.Several precise laboratory tests(i.e.,split Hopkinson pressure bar test)on marble samples in both AE and VE were performed to investigate physical and dynamic mechanical behaviors of marble after heat treatment(25℃ to 900℃)in AE and VE.The tests results demonstrate that related properties of marble could be divided into three different stages by corresponding critical temperatures of 300℃ and 600℃,at which heat damage factors are 0.29(0.30)and 0.88(0.92)in VE(AE),respectively.The thermal damage developes more fully in AE than in VE.The thermal environment plays an important role,especially in Stage 3.Specifically,a conspicuous difference(greater than 20%)between AE and VE occurs in corresponding dynamic strength and the anti-deformation capacities of tested marble specimen.The influence of heat damage of rock is very important and valuable in engineering practice,particularly when the temperature is very high(greater than 600℃).
基金Projects(51104078,51264023)supported by the National Natural Science Foundation of ChinaProject(2010CD022)supported by Yunnan Province Applied Basic Research Fund,China+2 种基金Project(IRT1250)supported by the Program for Innovative Research Team in University of Ministry of Education of ChinaProject(U1202271)supported by the National Natural Science Foundation of China-Yunnan United FundProject(KKZ3201252020)supported by Kunming University of Science and Technology for Talent Training,China
文摘The feasibility study of the AlCl(g) generated by Al_2O-AlCl_2-C system under vacuum was carried out by thermodynamic analysis and CASTEP package of the Material Studio program which was based on density functional theory(DFT) formalism. Thermodynamic calculations indicate that Al Cl and CO molecules can be formed under conditions of temperature 1760 K and the pressure of 60 Pa. The interaction of Al_2O and AlCl_2 with C shows that the chemical adsorption of Al_2O and AlCl_2 does take place on C(001) crystal plane, and at the same time, new chemical bond is formed between Al atom in Al_2O and Cl atoms from one of the Al—Cl bonds in AlCl_2. The results, after 1.25 ps dynamics simulation, indicate that adsorbed Al Cl molecules are generated and CO molecule will be formed in this system, and they will escape from C(001) surface after a longer period of dynamic simulation time. It means that the reaction of Al_2O and AlCl_2 with C can be carried out under given constraint condition.