A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were...A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were successfully constructed by the new technique. The results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailings dams prove that the new technique improves structure and stability of the dams and working conditions compared with the traditional technique. The thin layers of fine-grained soils are greatly reduced, fine tailings sand is solid to make the dam stable and seepage conditions are well improved; the immersing line of the dam descends. In addition, the stability and liquefaction resistance of tailings dams are strengthened remarkably. The interior stress is compressive stress, stress level of every element is less than 1.0 and safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailings dams is greater than 1.5 according to the analysis of seismic response by finite element method.展开更多
文摘A new technique of combining accretion by cyclone separator and scattertube for tailings dams was developed according to laboratory experiment, model experiment and spot experiment technology. Three tailings dams were successfully constructed by the new technique. The results of engineering geological exploration, static and dynamic test and stability analysis on Baizhishan tailings dams prove that the new technique improves structure and stability of the dams and working conditions compared with the traditional technique. The thin layers of fine-grained soils are greatly reduced, fine tailings sand is solid to make the dam stable and seepage conditions are well improved; the immersing line of the dam descends. In addition, the stability and liquefaction resistance of tailings dams are strengthened remarkably. The interior stress is compressive stress, stress level of every element is less than 1.0 and safety coefficient of every element is greater than 1.0. The safety coefficient against liquefaction of every element of tailings dams is greater than 1.5 according to the analysis of seismic response by finite element method.