期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于情感隐空间学习与CLIP模型的身体动作情感识别方法
1
作者 罗红 慎煜杰 +1 位作者 陈娟娟 王丹 《计算机应用》 CSCD 北大核心 2024年第S2期44-49,共6页
身体动作情感识别的关键是提取人物身体动作蕴含的情感特征。针对现有模型情感特征学习能力较差且情感识别精度难以提升的问题,提出一种基于情感隐空间学习与对比语言-图像预训练(CLIP)模型的身体动作情感识别方法。首先,引入CLIP模型,... 身体动作情感识别的关键是提取人物身体动作蕴含的情感特征。针对现有模型情感特征学习能力较差且情感识别精度难以提升的问题,提出一种基于情感隐空间学习与对比语言-图像预训练(CLIP)模型的身体动作情感识别方法。首先,引入CLIP模型,从而增强模型的情感特征学习能力。其次,针对细粒度多标签情感分类任务,提出情感隐空间学习(ELSL)方法。该方法能通过学习情感隐空间向各个子空间的判别映射,在各个情感子空间上捕获情感类别之间的细微差异和对各情感类别的分类有益的特征信息。在面向真实世界开放场景的肢体语言数据集(BoLD)上的实验结果表明,所提方法充分利用了CLIP模型与隐空间学习在特征学习上的优势,取得了显著的性能提升。具体地,相较于运动分析网络(MANet),所提方法的平均精度均值(mAP)提高了1.08个百分点,平均受试者工作特征曲线下方面积(mRA)提高了1.32个百分点。 展开更多
关键词 身体动作情感识别 对比语言-图像预训练模型 隐空间学习 提示学习 多标签分类
在线阅读 下载PDF
融合音频、文本、表情动作的多模态情感识别 被引量:14
2
作者 贾宁 郑纯军 《应用科学学报》 CAS CSCD 北大核心 2023年第1期55-70,共16页
针对机器识别人类情感过程中的精度不高、泛化能力不强等问题,提出了一种基于语音、文本和表情动作的3种模态情感识别融合方法。在语音模态中,设计深度波场延拓和改进波动物理模型,模拟长短期记忆(long short-term memory,LSTM)网络的... 针对机器识别人类情感过程中的精度不高、泛化能力不强等问题,提出了一种基于语音、文本和表情动作的3种模态情感识别融合方法。在语音模态中,设计深度波场延拓和改进波动物理模型,模拟长短期记忆(long short-term memory,LSTM)网络的序列信息挖掘过程;在文本模态中,利用含有多头注意力机制的Transformer模型捕捉语义上潜在的情感表达;在表情动作模态中,将提取面部表情和手部动作的序列特征与双向三层含有注意力机制的LSTM模型相结合。最终提出一种多性能指标下的模态融合方案,以实现高精度的、强泛化能力的情感识别。在通用的交互式情感二元运动捕捉语料库IEMOCAP中,将所提出的方法与现有的情感识别算法进行对比,实验结果表明:所提出的算法在单个模态和多个模态中的识别精度均较高,平均精度改善达到16.4%和10.5%,有效提升了人机交互中情感识别的能力。 展开更多
关键词 语音情感识别 文本情感识别 动作情感识别 Transformer模型 注意力机制
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部