SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过...SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过程中加入了渐变的信息。实验结果表明,提出的G-SURF(Gradual-SURF)算子可以获得更稳定的效果,并且同时计算复杂度也有所改善。展开更多
针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能...针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的RO(IRegion Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。展开更多
文摘SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过程中加入了渐变的信息。实验结果表明,提出的G-SURF(Gradual-SURF)算子可以获得更稳定的效果,并且同时计算复杂度也有所改善。
文摘针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的RO(IRegion Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。