针对高实时性要求中SURF(speeded up robust features)特征匹配算法速度偏慢的缺点,提出一种基于分块的加速方法,根据匹配中模板图像与搜索图像的大小对比关系,分别采用只对搜索图像分块的单分块方法与对模板图像与搜索图像都进行分块...针对高实时性要求中SURF(speeded up robust features)特征匹配算法速度偏慢的缺点,提出一种基于分块的加速方法,根据匹配中模板图像与搜索图像的大小对比关系,分别采用只对搜索图像分块的单分块方法与对模板图像与搜索图像都进行分块的双分块方法,其中单分块方法包括简单K分块、简单K+1分块、尺度K+1分块及模板尺寸与尺度自适应的分块方法;双分块方法包括单块匹配与多块匹配。针对不同的分块方法分析了其理论上的平均匹配时间,并通过实验进行了对比,结果证明分块方法能够在保证正确匹配的同时大幅提高匹配速度。展开更多
针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能...针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的RO(IRegion Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。展开更多
SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过...SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过程中加入了渐变的信息。实验结果表明,提出的G-SURF(Gradual-SURF)算子可以获得更稳定的效果,并且同时计算复杂度也有所改善。展开更多
随着中国遥感卫星的迅速发展,要求影像几何质量评价方法可以在待评图像和参考图像间提取出精确且分布均匀的控制点信息。文章提出一种基于多源、高精度遥感图像的特征点匹配方法。该方法首先用加速稳健特征(Speeded Up Robust Features,...随着中国遥感卫星的迅速发展,要求影像几何质量评价方法可以在待评图像和参考图像间提取出精确且分布均匀的控制点信息。文章提出一种基于多源、高精度遥感图像的特征点匹配方法。该方法首先用加速稳健特征(Speeded Up Robust Features,Surf)算法对"资源三号"卫星图像和参考图像进行粗匹配以建立两幅图像间的整体几何关系,通过对相同区域进行wallis滤波增强图像纹理信息,然后用Surf算法进行特征点的提取和匹配,最后利用对极几何约束剔除误匹配点。试验结果表明,该方法可以全自动、快速和精确的提取影像控制点。展开更多
文摘针对高实时性要求中SURF(speeded up robust features)特征匹配算法速度偏慢的缺点,提出一种基于分块的加速方法,根据匹配中模板图像与搜索图像的大小对比关系,分别采用只对搜索图像分块的单分块方法与对模板图像与搜索图像都进行分块的双分块方法,其中单分块方法包括简单K分块、简单K+1分块、尺度K+1分块及模板尺寸与尺度自适应的分块方法;双分块方法包括单块匹配与多块匹配。针对不同的分块方法分析了其理论上的平均匹配时间,并通过实验进行了对比,结果证明分块方法能够在保证正确匹配的同时大幅提高匹配速度。
文摘针对UAV(Unmanned Aerial Vehicle)侦察目标识别中的实时性和鲁棒性的要求,提出一种基于SURF(Speeded Up Robust Features)的快速目标识别算法。对UAV侦察图像进行预处理,采用不变矩构造遗传算法的适应度函数,利用遗传算法的全局搜索能力快速地提取可能包含目标的RO(IRegion Of Interesting)区域。在ROI区域和模板图像中提取SURF特征点,采用最近邻的匹配算法搜索匹配对,从而精确确定目标的位置。仿真结果显示,该算法可以明显地提高目标识别的实时性并具有相当的鲁棒性。
文摘SURF算子为了改善SIFT的计算复杂度高的问题,简化和近似了DoH(Determinant of Hessian),这样不仅保证了算法结果的稳定性,也提高了计算效率。但是SURF这样的近似简化过程,损失了图像中的一些渐变信息。对SURF算子进行了改进,在其处理过程中加入了渐变的信息。实验结果表明,提出的G-SURF(Gradual-SURF)算子可以获得更稳定的效果,并且同时计算复杂度也有所改善。
文摘随着中国遥感卫星的迅速发展,要求影像几何质量评价方法可以在待评图像和参考图像间提取出精确且分布均匀的控制点信息。文章提出一种基于多源、高精度遥感图像的特征点匹配方法。该方法首先用加速稳健特征(Speeded Up Robust Features,Surf)算法对"资源三号"卫星图像和参考图像进行粗匹配以建立两幅图像间的整体几何关系,通过对相同区域进行wallis滤波增强图像纹理信息,然后用Surf算法进行特征点的提取和匹配,最后利用对极几何约束剔除误匹配点。试验结果表明,该方法可以全自动、快速和精确的提取影像控制点。