为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(...为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(neural processing unit, NPU)实现硬件加速。在传统的模型剪枝和量化基础上,采用通道剪枝结合混合精度量化的方法,在保证模型性能的前提下最大程度压缩网络模型。硬件部署推理实验结果表明,该方法可实现对原始模型压缩7.75倍,模型推理速度提升2.55倍,实验验证了该方法对ResNet模型的压缩和硬件推理加速具有一定效果。展开更多
为加速AprilTag检测,提出了一种基于改进YOLOv5s预提取RoI(region of interest)的AprilTag检测方法。改进YOLOv5s网络,在输入灰度图像的单通道模式下,分别采用Ghost Bottleneck和ConvNeXt Block替换主干网络和颈部网络的C3和瓶颈模块,...为加速AprilTag检测,提出了一种基于改进YOLOv5s预提取RoI(region of interest)的AprilTag检测方法。改进YOLOv5s网络,在输入灰度图像的单通道模式下,分别采用Ghost Bottleneck和ConvNeXt Block替换主干网络和颈部网络的C3和瓶颈模块,提高模型的推理速度和泛化能力;通过亮度增强扩充数据集,提高模型鲁棒性。基于改进的YOLOv5网络进行AprilTag预识别,通过输出锚框划分RoI进行AprilTag检测,缩小图像处理范围,提高计算效率。实验结果表明,提出的AprilTag检测方法在1080P图像下FPS比传统AprilTag算法提高了77.42%以上。展开更多
文摘为快速、方便、正确地将卷积神经网络部署于嵌入式平台实现硬件加速,并解决在硬件部署时遇到的模型计算量大、占用存储多、部署困难等问题,提出一种基于ResNet模型的通道剪枝结合混合精度量化的方法,将模型压缩后,部署于神经网络处理器(neural processing unit, NPU)实现硬件加速。在传统的模型剪枝和量化基础上,采用通道剪枝结合混合精度量化的方法,在保证模型性能的前提下最大程度压缩网络模型。硬件部署推理实验结果表明,该方法可实现对原始模型压缩7.75倍,模型推理速度提升2.55倍,实验验证了该方法对ResNet模型的压缩和硬件推理加速具有一定效果。
文摘为加速AprilTag检测,提出了一种基于改进YOLOv5s预提取RoI(region of interest)的AprilTag检测方法。改进YOLOv5s网络,在输入灰度图像的单通道模式下,分别采用Ghost Bottleneck和ConvNeXt Block替换主干网络和颈部网络的C3和瓶颈模块,提高模型的推理速度和泛化能力;通过亮度增强扩充数据集,提高模型鲁棒性。基于改进的YOLOv5网络进行AprilTag预识别,通过输出锚框划分RoI进行AprilTag检测,缩小图像处理范围,提高计算效率。实验结果表明,提出的AprilTag检测方法在1080P图像下FPS比传统AprilTag算法提高了77.42%以上。