期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
基于梯度下降的自适应姿态融合算法 被引量:10
1
作者 陈卓 任久春 朱谦 《传感器与微系统》 CSCD 2019年第3期124-126,共3页
针对第一代帆船姿态测量系统中采用的自适应卡尔曼滤波算法作用范围有限、动态性能较差等缺陷,基于微机电系统(MEMS)惯性传感器与梯度下降姿态融合算法提出了两种自适应方法,分别根据当前时刻之前N个采样点的平均运动加速度与加速度的... 针对第一代帆船姿态测量系统中采用的自适应卡尔曼滤波算法作用范围有限、动态性能较差等缺陷,基于微机电系统(MEMS)惯性传感器与梯度下降姿态融合算法提出了两种自适应方法,分别根据当前时刻之前N个采样点的平均运动加速度与加速度的变化量设计自适应控制因子,得到稳定的动态梯度下降步长。实验结果表明:两种算法性能均优于自适应卡尔曼滤波与单点加速度抑制法,其中,基于加速度增量的控制算法更加符合高速运动状态下加速度剧烈变化的实际规律,测量性能达到最优,符合海面帆船运动船体姿态测量的实际需求。 展开更多
关键词 姿态解算 多传感器测量 梯度下降算法 自适应滤波融合 加速度控制
在线阅读 下载PDF
基于鲁棒控制的自适应分数阶梯度优化算法设计
2
作者 刘佳旭 陈嵩 +2 位作者 蔡声泽 许超 褚健 《控制理论与应用》 EI CAS CSCD 北大核心 2024年第7期1187-1196,共10页
当目标函数是强凸函数时,一般的分数阶梯度下降法不能够使函数收敛到最小值点,只能收敛到一个包含最小值点的区域内或者是发散的.为了解决这个问题,本文提出了自适应分数阶梯度下降法(AFOGD)和自适应分数阶加速梯度下降法(AFOAGD)两种... 当目标函数是强凸函数时,一般的分数阶梯度下降法不能够使函数收敛到最小值点,只能收敛到一个包含最小值点的区域内或者是发散的.为了解决这个问题,本文提出了自适应分数阶梯度下降法(AFOGD)和自适应分数阶加速梯度下降法(AFOAGD)两种新的优化算法.受到鲁棒控制理论中二次约束和李雅普诺夫稳定性理论的启发,建立了一个线性矩阵不等式去分析所提出的算法的收敛性.当目标函数是L-光滑且m-强凸时,算法可以达到R线性收敛.最后几个数值仿真证明了算法的有效性和优越性. 展开更多
关键词 梯度下降 自适应算法 鲁棒控制 分数阶微积分 加速算法
在线阅读 下载PDF
随机ADD算法的不确定网络优化研究
3
作者 李冬梅 刘艳 《计算机应用研究》 CSCD 北大核心 2014年第12期3808-3812,共5页
传统的网络优化问题通过对偶梯度下降算法来解决,虽然该算法能够以分布式方式来实现,但其收敛速度较慢。加速对偶下降算法(ADD)通过近似牛顿步长的分布式计算,提高了对偶梯度下降算法的收敛速率。但由于通信网络的不确定性,在约束不确定... 传统的网络优化问题通过对偶梯度下降算法来解决,虽然该算法能够以分布式方式来实现,但其收敛速度较慢。加速对偶下降算法(ADD)通过近似牛顿步长的分布式计算,提高了对偶梯度下降算法的收敛速率。但由于通信网络的不确定性,在约束不确定时,该算法的收敛性难以保证。基于此,提出了一种随机形式的ADD算法来解决该网络优化问题。理论上证明了随机ADD算法当不确定性的均方误差有界时,能以较高概率收敛于最优值的一个误差邻域;当给出更严格的不确定性的约束条件时,算法则可以较高概率收敛于最优值。实验结果表明,随机ADD算法的收敛速率比随机梯度下降算法快两个数量级。 展开更多
关键词 网络优化 加速对偶梯度下降算法 随机ADD 收敛速率
在线阅读 下载PDF
两相图像变分分割凸松弛模型快速算法 被引量:1
4
作者 江成顺 汪先超 《计算机学报》 EI CSCD 北大核心 2013年第5期1086-1096,共11页
主要研究两相图像分割凸模型的三类快速数值算法.首先,分别针对无约束和有约束的图像分割凸模型分别提出相应的具有O(1/k)阶收敛速率的梯度投影算法,并结合快速迭代收缩算法的加速收敛策略,将所提出的梯度投影算法的收敛速率从O(1/k)阶... 主要研究两相图像分割凸模型的三类快速数值算法.首先,分别针对无约束和有约束的图像分割凸模型分别提出相应的具有O(1/k)阶收敛速率的梯度投影算法,并结合快速迭代收缩算法的加速收敛策略,将所提出的梯度投影算法的收敛速率从O(1/k)阶提高到O(1/k2)阶;其次,基于分块协调下降的思想,对无约束的图像分割凸模型采用Newton法求解,该算法不仅是单调下降的,而且具有二阶收敛性;然后,根据交互式迭代算法的思想,在约束模型的Fenchel原始-对偶形式的基础上,提出了一种通过原始变量和对偶变量交互式混合迭代求解的算法,所提出的算法在求解过程中避免了梯度算子和散度算子作用于未知变量,使得迭代形式更简单;最后,仿真实验表明了这3类算法的有效性和在收敛速率上的优势. 展开更多
关键词 图像分割 凸松弛模型 梯度投影算法 分块协调下降 原始-对偶
在线阅读 下载PDF
基于社会媒体内容和网络拓扑的特定话题推特摘要研究 被引量:1
5
作者 贺瑞芳 段兴义 +1 位作者 张雪菲 赵文丽 《计算机学报》 EI CSCD 北大核心 2019年第6期1174-1189,共16页
推特摘要旨在从话题相关的社会媒体短文本中提炼概要的推文集,以获取有效信息,可用于舆情监控、竞争情报分析及电子商务等.然而社会媒体的海量、嘈杂及不规范性使得仅依赖纯文本的传统摘要方法难以直接迁移到社交媒体情景中;而现有的推... 推特摘要旨在从话题相关的社会媒体短文本中提炼概要的推文集,以获取有效信息,可用于舆情监控、竞争情报分析及电子商务等.然而社会媒体的海量、嘈杂及不规范性使得仅依赖纯文本的传统摘要方法难以直接迁移到社交媒体情景中;而现有的推特摘要方法很少考虑数据稀疏性和社会网络传播带来的强冗余性,鲜有通过挖掘推文之间潜在的社会网络结构关系进行文摘内容选择,忽略了信息可以沿着社交网络进行传播.受压缩感知及社会学理论的启发,该文提出基于社会网络和稀疏重构的推特摘要方法(SNSR)以更好地融合社会媒体内容和结构信息.首先,挖掘推文中隐含的摘要模式,将其建模为组稀疏正则项,以捕捉代表性的推特摘要组合;其次,建模社会网络中表达一致性与表达传染性为社会化正则项,以探索推文之间的潜在网络结构关系在推特摘要中的作用;再次,建模社会媒体信息传播带来的强冗余性为多样性正则项,进而将这些约束整合到稀疏重构的推特摘要框架中;最后,提出基于Nesterov加速梯度下降的推特摘要算法,以解决推特摘要优化框架中的覆盖性、稀疏性以及多样性等问题.同时,由于推特摘要标准语料的缺乏,作者建设了12个话题的评测数据集.相关的实验结果证明了文中提出方法的有效性. 展开更多
关键词 推特摘要 稀疏重构 网络拓扑 社会学理论 Nesterov加速梯度下降算法
在线阅读 下载PDF
基于AdaGrad自适应DA方法的最优个体收敛速率 被引量:1
6
作者 张旭 韦洪旭 《兵工自动化》 2023年第11期49-55,共7页
针对AdaGrad将自适应矩阵应用到随机梯度下降法中降低工程上超参数搜索的问题,提出一种自适应对偶平均方法。将AdaGrad自适应矩阵引入到对偶平均方法框架中,形成自适应的对偶平均方法,并通过凸优化实验验证其可行性和收敛效果。数学推... 针对AdaGrad将自适应矩阵应用到随机梯度下降法中降低工程上超参数搜索的问题,提出一种自适应对偶平均方法。将AdaGrad自适应矩阵引入到对偶平均方法框架中,形成自适应的对偶平均方法,并通过凸优化实验验证其可行性和收敛效果。数学推导结果表明:对于非光滑条件下的一般凸函数AdaDA方法可以达到与维数相关O(1/√t)的最优个体收敛速率,为其提供了理论支撑。 展开更多
关键词 优化算法 梯度下降 对偶平均方法 AdaGrad 自适应矩阵
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部