The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an addi...The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.展开更多
The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and...The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively.展开更多
In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock j...In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.展开更多
Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on...Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on fuzzy logic controller(FLC) and linear quadratic regulator(LQR) for improving vehicle path following,roll and handling performances simultaneously.3-DOF vehicle model including yaw rate,lateral velocity(lateral dynamic) and roll angle(roll dynamic) were developed.The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal.The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers.Simulation results demonstrate that in both cases(FLC and LQR controllers) by reducing roll angle,lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver,which ensures vehicle stability and handling properties.Finally,the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.展开更多
基金supported by the National Natural Science Foundation of China(22279063,52001170)Tianjin Natural Science Foundation(22JCYBJC00590)the Fundamental Research Funds for the Central Universities.We thank the Haihe Laboratoryof Sustainable Chemical Transformations for financial support.
文摘The unstable zinc(Zn)/electrolyte interfaces formed by undesired dendrites and parasitic side reactions greatly hinder the development of aqueous zinc ion batteries.Herein,the hydroxy-rich sorbitol was used as an additive to reshape the solvation structure and modulate the interface chemistry.The strong interactions among sorbitol and both water molecules and Zn electrode can reduce the free water activity,optimize the solvation shell of water and Zn^(2+)ions,and regulate the formation of local water(H_(2)O)-poor environment on the surface of Zn electrode,which effectively inhibit the decomposition of water molecules,and thus,achieve the thermodynamically stable and highly reversible Zn electrochemistry.As a result,the assembled Zn/Zn symmetric cells with the sorbitol additive realized an excellent cycling life of 2000 h at 1 mA·cm^(-2)and 1 mAh·cm^(-2),and over 250 h at 5 mA.cm^(-2)and 5 mAh.cm^(-2).Moreover,the Zn/Cu asymmetric cells with the sorbitol additive achieved a high Coulombic efficiency of 99.6%,obtaining a better performance than that with a pure 2 mol-L^(-1)ZnSO_(4)electrolyte.And the constructed Zn/poly1,5-naphthalenediamine(PNDA)batteries could be stably discharged for 2300 cycles at 1 A g^(-1)with an excellent capacity retention rate.This result indicates that the addition of 1 mol-L^(-1)non-toxic sorbitol into a conventional ZnSO_(4)electrolyte can successfully protect the Zn anode interface by improving the electrochemical properties of Zn reversible deposition/decomposition,which greatly promotes its cycle performance,providing a new approach in future development of high performance aqueous Zn ion batteries.
基金Project(FRF-TP-20-041A1)supported by the Fundamental Research Funds for the Central Universities,ChinaProjects(2016YFC0600801,2017YFC0804103)supported by the State Key Research Development Program of ChinaProjects(51774022,52074020)supported by the National Natural Science Foundation of China.
文摘The object of this article is to investigate the energy evolution mechanism and failure criteria of cross-jointed samples containing an opening during deformation and failure based on the uniaxial compression test and rock energy principle.The results show that the energy evolution characteristics of the samples correspond to a typical progressive damage mode.The peak total energy,peak elastic energy,and total input energy of the samples all first decrease and then increase with an increase of half of the included angle,reaching their minimum values when this angle is 45°,while the dissipated energy generally increases with this angle.The existence of the opening and cross joints can obviously weaken the energy storage capacity of the rock,and the change in the included angle of the cross joint has a great influence on the elastic energy ratio of the sample before the peak stress,which leads to some differences in the distribution laws of the input energy.The continuous change and the subsequent sharp change in the rate of change in the energy consumption ratio can be used as the criteria of the crack initiation and propagation and the unstable failure of the sample,respectively.
基金Project(51274249)supported by the National Natural Science Foundation of ChinaProject(2015zzts076)supported by the Explore Research Fund for Graduate Students of ChinaProject(201406)supported by the Hunan Key Laboratory of Coal Resources and Safe Mining Open-end Funds,China
文摘In order to investigate the failure mechanism of rock joint,a series of laboratory tests including cyclic direct shear tests under constant normal load(CNL)conditions were conducted.Morphology parameters of the rock joint surface were precisely calculated by means of a three-dimensional laser scanning machine.All test results were analyzed to investigate the shear behavior and normal displacement behavior of rock joints under CNL conditions.Degradation of rock joint surface during cyclic shear tests was also analyzed.The comparison results of the height parameters and the hybrid parameters of the joint surface during cyclic tests show that the degradation of the surface mostly happens in the first shear and the constant normal loads imposed on the joints have significant promotion effects on the morphology degradation.During cyclic shear tests,joints surfaces evolve from rough state to smooth state but keep an overall undulation.Dilatancy of rock joints degrades with the degradation of joint surface and the increase of normal loads.The closure deformation of joint is larger than that of the intact rock,and the normal stiffness increases with the increase of shearing times.
文摘Improving rollover and stability of the vehicles is the indispensable part of automotive research to prevent vehicle rollover and crashes.The main objective of this work is to develop active control mechanism based on fuzzy logic controller(FLC) and linear quadratic regulator(LQR) for improving vehicle path following,roll and handling performances simultaneously.3-DOF vehicle model including yaw rate,lateral velocity(lateral dynamic) and roll angle(roll dynamic) were developed.The controller produces optimal moment to increase stability and roll margin of vehicle by receiving the steering angle as an input and vehicle variables as a feedback signal.The effectiveness of proposed controller and vehicle model were evaluated during fishhook and single lane-change maneuvers.Simulation results demonstrate that in both cases(FLC and LQR controllers) by reducing roll angle,lateral acceleration and side slip angles remain under 0.6g and 4° during maneuver,which ensures vehicle stability and handling properties.Finally,the sensitivity and robustness analysis of developed controller for varying longitudinal speeds were investigated.