To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and stra...To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.展开更多
In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with ...In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.展开更多
基金Project(51304171)supported by the National Natural Science Foundation of ChinaProject(E2013203248)supported by Natural Science Foundation of Hebei Province of ChinaProject(NECSR-201209)supported by Open Foundation of the National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,China
文摘To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.
基金Project(50876116) supported by the National Natural Science Foundation of ChinaProject(2007CK3077) supported by Innovative Program of Hunan Science and Technology AgencyProject(1343-77225) supported by the Graduate School of Central South University
文摘In order to investigate Joule heating power,a three-dimensional finite element model(FEM) was developed to predict Joule heating power in the channels of double-loop inductor. The simulated results were compared with experimental data from low load trials for a 400 kW inductor. The results,such as power factor and Joule heating power,show reasonable correlation with experimental data,and Joule heating rate reaches the maximum at the corners and the minimum at the centre of the cross-section area. With increasing relative permeability of iron core,length of coils,current frequency and resistivity of metal melt,the power factor and Joule heating power change. It is concluded that current frequency,the resistivity and length of the coil play a critical role in determining the power factor and Joule heating power,whereas relative permeability of the magnetic core shows no significant influence on them.