期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
面向卷绕机装配车间的无线信号聚类分层定位方法
1
作者 丁司懿 童辉辉 +1 位作者 毛新华 张洁 《纺织学报》 北大核心 2025年第6期212-222,共11页
为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分... 为解决卷绕机装配车间这种复杂环境中难以高效准确定位的问题,提出了基于无线网络(WiFi)的分层定位方法。通过分析装配车间无线网络环境的特点及其特定的定位需求,并结合卷绕机装配车间内的无线网络定位的特点,开发了一种结合XGBoost分类模型算法、K-means聚类算法和加权K最近邻(WKNN)算法的无线网络分层定位方法。同时,依据装配车间的特点与需求对定位区域进行有效划分并初步构建指纹库,根据装配车间内WiFi信号的特点,使用K-means聚类算法分割并更新指纹库;然后利用XGBoost分类模型算法确定子区域实现粗定位,再用WKNN算法精确定位。实验结果表明:该方法在定位精度上比传统WKNN算法提高了143.82%,平均定位时间减少了约20%;这些改进有效提升了卷绕机装配车间中无线网络定位的准确性和效率。 展开更多
关键词 卷绕机装配车间 无线网络 分层定位方法 XGBoost分类模型 k-MEANS聚类算法 加权k最近邻算法
在线阅读 下载PDF
一种Tor网站多网页多标签指纹识别方法
2
作者 蔡满春 席荣康 +1 位作者 朱懿 赵忠斌 《信息网络安全》 CSCD 北大核心 2024年第7期1088-1097,共10页
Tor匿名通信系统经常被不法分子用来从事暗网犯罪活动,Tor网页指纹识别技术为暗网监管提供技术手段。针对单标签Tor网页指纹识别技术在网络监管中实用性差的问题,文章提出一种多网页多标签Tor指纹识别方法。首先,对标准粒子群算法、K最... Tor匿名通信系统经常被不法分子用来从事暗网犯罪活动,Tor网页指纹识别技术为暗网监管提供技术手段。针对单标签Tor网页指纹识别技术在网络监管中实用性差的问题,文章提出一种多网页多标签Tor指纹识别方法。首先,对标准粒子群算法、K最近邻算法进行参数优化并整合,提出自适应粒子群优化K最近邻模型APSO-KNN,进行连续多标签网页分割。然后,利用自注意力机制和一维卷积神经网络模型对网页分割片段进行内容识别。最后,利用APSO-KNN记忆打分机制选择识别失败的网页的次优分割点进行网页重分割。实验结果表明,APSO-KNN采用粒子搜索机制代替穷举遍历机制寻找分割点能取得96.30%的分割准确率,分割效率较传统KNN算法有显著提高。深度学习模型SA-1DCNN抗网页分割误差性能远优于机器学习模型,识别准确率可达96.1%。 展开更多
关键词 洋葱路由 网页指纹 粒子群优化算法 加权k最近邻算法
在线阅读 下载PDF
ARIMA-BP神经网络高速列车隧道压力波预测模型研究 被引量:7
3
作者 陈春俊 杨露 +1 位作者 何智颖 周林春 《中国测试》 CAS 北大核心 2021年第10期80-86,共7页
为更精准地进行车内压力波动控制,需要预测高速列车通过隧道时车外隧道压力波的实时变化值。在对列车历史运行重复隧道压力波数据的分析基础上,采用工况匹配(WCM)与加权K最近邻(WKNN)算法从数据库中选取若干与本次工况相接近的运行状态... 为更精准地进行车内压力波动控制,需要预测高速列车通过隧道时车外隧道压力波的实时变化值。在对列车历史运行重复隧道压力波数据的分析基础上,采用工况匹配(WCM)与加权K最近邻(WKNN)算法从数据库中选取若干与本次工况相接近的运行状态数据,并根据相似程度确定数据权重,构建预测用的历史数据。分别采用差分自回归滑动平均(ARIMA)与BP神经网络(BPNN)模型对隧道压力波进行预测,并将两种预测结果并联考虑,形成ARIMA-BPNN隧道压力波组合预测模型。利用武广客运专线某隧道压力波实测数据进行仿真。仿真结果表明:与WCM-WKNN-ARIMA及WCM-WKNN-BPNN单一预测模型以及WCM-ARIMA-BPNN组合预测模型相比,所建立组合模型能有效对隧道压力波进行预测,且能够取得更高精度的预测结果。 展开更多
关键词 高速列车 隧道压力波预测模型 差分自回归滑动平均-BP神经网络组合模型 工况匹配算法 加权k最近邻算法
在线阅读 下载PDF
基于测量报告信号聚类的指纹定位方法 被引量:1
4
作者 张海永 方贤进 +3 位作者 张恩皖 李宝玉 彭超 穆健翔 《计算机应用》 CSCD 北大核心 2023年第12期3947-3954,共8页
针对基于加权K最近邻(WKNN)和机器学习算法的指纹库定位方法存在精度和定位效率较低的问题,提出一种基于测量报告(MR)信号聚类的指纹定位方法。首先,把MR信号分为室内、道路和室外这3种属性;其次,利用地理信息系统(GIS)信息将栅格分为... 针对基于加权K最近邻(WKNN)和机器学习算法的指纹库定位方法存在精度和定位效率较低的问题,提出一种基于测量报告(MR)信号聚类的指纹定位方法。首先,把MR信号分为室内、道路和室外这3种属性;其次,利用地理信息系统(GIS)信息将栅格分为建筑物、道路和室外子区域,并将不同属性的MR数据落入对应的属性子区域;最后,借助K均值(K-Means)聚类算法对栅格内的MR信号进行聚类分析,以创建子区域下的虚拟子区域,并采用WKNN算法对MR测试样本进行匹配。此外,利用欧氏距离计算平均定位精度,并通过生产环境的一些MR数据测试了所提方法的定位性能。实验结果表明,所提方法的50 m定位误差占比为71.21%,相较于WKNN算法提升了2.64个百分点;平均定位定位误差为44.73 m,相较于WKNN算法降低了7.60 m。所提方法具备良好的定位精度和效率,可满足生产环境中MR数据的定位需求。 展开更多
关键词 测量报告 定位 信号聚类 加权k最近邻算法 欧氏距离
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部