期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
加权空-谱与最近邻分类器相结合的高光谱图像分类
被引量:
39
1
作者
黄鸿
郑新磊
《光学精密工程》
EI
CAS
CSCD
北大核心
2016年第4期873-881,共9页
提出了一种基于加权空-谱距离(WSSD)的相似性度量方法 ,并将其应用到最近邻分类器(KNN)中,导出了一种新的高光谱图像分类算法。该算法利用高光谱图像的物理特性,通过引入空间窗口和光谱因子这两个参数来挖掘出图像中的空间信息与光谱信...
提出了一种基于加权空-谱距离(WSSD)的相似性度量方法 ,并将其应用到最近邻分类器(KNN)中,导出了一种新的高光谱图像分类算法。该算法利用高光谱图像的物理特性,通过引入空间窗口和光谱因子这两个参数来挖掘出图像中的空间信息与光谱信息,利用空间近邻点对中心像元进行重构。在最大限度减少图像冗余信息的基础上,增大了同类像元间的相似性以及异类像元间的差异性,获得了更为有效的鉴别特征,从而更好地实现了数据间的相似性度量。基于Indian Pines和PaviaU高光谱数据集进行了实验,结果表明:将提出的WSSD-KNN算法应用于高光谱图像分类时,其分类精度高于其他算法,总体分类精度分别达到了91.72%和96.56%。由于算法较好地融合了图像中的空间-光谱信息,提取出了更为有效的鉴别特征,故不仅有效地改善了高光谱数据的地物分类精度,而且可在训练样本较少时,保持较高的识别率。
展开更多
关键词
高光
谱
图像
图像分类
空
间近邻
加权空-谱距离
最近邻分类器
在线阅读
下载PDF
职称材料
题名
加权空-谱与最近邻分类器相结合的高光谱图像分类
被引量:
39
1
作者
黄鸿
郑新磊
机构
重庆大学光电技术与系统教育部重点实验室
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2016年第4期873-881,共9页
基金
国家自然科学基金资助项目(No.41371338
No.61101168)
+2 种基金
重庆市基础与前沿研究计划资助项目(No.cstc2013jcyjA4005)
中央高校基本科研业务费专项资金资助项目(No.106112013CDJZR125501
No.1061120131204)
文摘
提出了一种基于加权空-谱距离(WSSD)的相似性度量方法 ,并将其应用到最近邻分类器(KNN)中,导出了一种新的高光谱图像分类算法。该算法利用高光谱图像的物理特性,通过引入空间窗口和光谱因子这两个参数来挖掘出图像中的空间信息与光谱信息,利用空间近邻点对中心像元进行重构。在最大限度减少图像冗余信息的基础上,增大了同类像元间的相似性以及异类像元间的差异性,获得了更为有效的鉴别特征,从而更好地实现了数据间的相似性度量。基于Indian Pines和PaviaU高光谱数据集进行了实验,结果表明:将提出的WSSD-KNN算法应用于高光谱图像分类时,其分类精度高于其他算法,总体分类精度分别达到了91.72%和96.56%。由于算法较好地融合了图像中的空间-光谱信息,提取出了更为有效的鉴别特征,故不仅有效地改善了高光谱数据的地物分类精度,而且可在训练样本较少时,保持较高的识别率。
关键词
高光
谱
图像
图像分类
空
间近邻
加权空-谱距离
最近邻分类器
Keywords
hyperspectral image
image classification
spatial neighbor
weighted spatial
-
spectral distance
K Nearest Neighbor(KNN)
分类号
TP751.1 [自动化与计算机技术—检测技术与自动化装置]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
加权空-谱与最近邻分类器相结合的高光谱图像分类
黄鸿
郑新磊
《光学精密工程》
EI
CAS
CSCD
北大核心
2016
39
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部