期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
基于傅里叶描述子和加权稀疏表示的军事图像分类方法 被引量:1
1
作者 谢泽奇 张会敏 张善文 《计算机应用与软件》 北大核心 2019年第3期68-71,75,共5页
军事图像分类是一个重要的研究方向。在傅里叶描述子和加权稀疏表示的基础上,提出一种军事图像分类方法。利用Canny算法提取军事图像的轮廓特征,计算轮廓点的中心距离序列;再将该序列转换为极坐标转换,进行傅里叶变换,得到军事图像的改... 军事图像分类是一个重要的研究方向。在傅里叶描述子和加权稀疏表示的基础上,提出一种军事图像分类方法。利用Canny算法提取军事图像的轮廓特征,计算轮廓点的中心距离序列;再将该序列转换为极坐标转换,进行傅里叶变换,得到军事图像的改进傅里叶描述子;利用加权稀疏表示分类方法对图像进行分类。该方法的优点在于提取的傅里叶描述子具有很好的平移、旋转、尺度缩放和轮廓起始点的不变性。加权稀疏表示能够克服遮挡、弱特征、视角和姿态变化等因素的影响,并且具有较强的形状区分能力。在ICL军事图像数据库上进行分类实验,分类率高达92%以上。结果表明,该方法是有效可行的,能够为军事图像自动分类识别系统提供技术参考。 展开更多
关键词 军事图像分类 中心-边界距离序列 改进傅里叶描述子 加权稀疏表示分类
在线阅读 下载PDF
基于加权稀疏表示分类的车辆识别 被引量:1
2
作者 罗涛 冯玉田 +1 位作者 唐子成 毕超 《电子测量技术》 2018年第6期27-31,共5页
不同种类的车辆自动识别能够在很大程度上给人们提供便利,而通过声波来区分车辆的类型是可行的。由于声频信号和自然信号一样都具有稀疏性,稀疏表示分类(SRC)算法同样适用于车辆声频识别领域。但是SRC算法没有考虑样本的局部性,即没... 不同种类的车辆自动识别能够在很大程度上给人们提供便利,而通过声波来区分车辆的类型是可行的。由于声频信号和自然信号一样都具有稀疏性,稀疏表示分类(SRC)算法同样适用于车辆声频识别领域。但是SRC算法没有考虑样本的局部性,即没有考虑测试样本和每一个训练样本之间的相似性,从而导致识别效果不够优异。为了解决以上不足,提出了一种基于加权稀疏表示分类(WSRC)的声频传感器网络下车辆识别方法。通过对声频测试样本和各个声频训练样本之间的距离制定一个权重标准,并将其考虑进权重分配,以提高识别精度。实验结果表明,WSRC的识别精度相比于SRC有了明显的提高。同时,WSRC也明显优于SVM、k-NN这些常见分类算法,验证了WSRC在声频传感器网络下车辆识别的可行性。 展开更多
关键词 加权稀疏表示分类 权重标准 声频传感器网络 车辆识别
在线阅读 下载PDF
加权多尺度卷积稀疏表示及其在滚动轴承复合故障诊断中的应用 被引量:6
3
作者 王爽 丁传仓 +2 位作者 曹懿 王报祥 江星星 《仪器仪表学报》 EI CAS CSCD 北大核心 2024年第5期197-207,共11页
故障特征精确提取是实现轴承故障诊断的重要环节。卷积稀疏表示能够刻画特征的移位不变特性,非常适用于滚动轴承故障特征提取。然而,卷积稀疏表示忽略了故障冲击特征的周期性及不同尺度下的信号特性差异,制约了其在谐波成分和背景噪声... 故障特征精确提取是实现轴承故障诊断的重要环节。卷积稀疏表示能够刻画特征的移位不变特性,非常适用于滚动轴承故障特征提取。然而,卷积稀疏表示忽略了故障冲击特征的周期性及不同尺度下的信号特性差异,制约了其在谐波成分和背景噪声等干扰下的特征提取能力。因此,提出了加权多尺度卷积稀疏表示用于分离振动信号中的周期性故障冲击特征,从而实现轴承故障诊断。在构建的稀疏表示模型中,利用多尺度变换将原始信号转换到不同尺度下,并在不同尺度下采用不同权重系数以达到抑制谐波成分等干扰的目的。同时,为了凸显故障冲击特征,建立了约束故障特征稀疏系数周期性的正则项,提高冲击特征分离能力。此外,引入交替方向乘子法和受控极小化方法推导出迭代求解算法。最后,通过分析提取特征的波形、包络谱及两种故障信息定量评估指标,验证了提出方法拥有优异的轴承复合故障冲击特征提取和诊断能力。 展开更多
关键词 加权多尺度卷积稀疏表示 滚动轴承 故障诊断 故障特征提取
在线阅读 下载PDF
加权结构组稀疏表示的图像压缩感知重构 被引量:8
4
作者 李佳 高志荣 +1 位作者 熊承义 周城 《通信学报》 EI CSCD 北大核心 2017年第2期196-202,共7页
利用图像的非局部相似性先验以提升图像恢复质量已得到广泛关注。为了更有效地提升压缩感知(CS)图像的重构质量,提出了一种基于加权结构组稀疏表示(WSGSR)的图像压缩感知重构方法。采用非局部相似图像块结构组加权稀疏表示的1_l范数作... 利用图像的非局部相似性先验以提升图像恢复质量已得到广泛关注。为了更有效地提升压缩感知(CS)图像的重构质量,提出了一种基于加权结构组稀疏表示(WSGSR)的图像压缩感知重构方法。采用非局部相似图像块结构组加权稀疏表示的1_l范数作为规则化项约束优化重构,实现在更好地恢复图像高频细节信息的同时有效减少对图像低频成分的损失,图像重构质量得到明显改善。推导出一种加权软阈值收缩方法,实现对模型的优化求解,对幅值较大的重要系数采用较小的阈值收缩处理,对幅值较小的非重要系数采用相对较大的阈值收缩处理。实验结果比较验证了所提方法的有效性。 展开更多
关键词 压缩感知 图像重构 加权结构组稀疏表示 加权软阈值收缩
在线阅读 下载PDF
基于空间约束加权条件稀疏表示高光谱图像分类 被引量:2
5
作者 陈善学 屈龙瑶 胡灿 《系统工程与电子技术》 EI CSCD 北大核心 2016年第2期442-449,共8页
为了充分利用稀疏表示分类信息和高光谱图像的空间信息,提出结合马尔可夫随机场的加权条件稀疏表示高光谱图像分类算法。该算法对稀疏表示分解后的残差向量建立条件稀疏表示模型,在计算残差向量的类别归属时引入频段方差信息;利用光谱... 为了充分利用稀疏表示分类信息和高光谱图像的空间信息,提出结合马尔可夫随机场的加权条件稀疏表示高光谱图像分类算法。该算法对稀疏表示分解后的残差向量建立条件稀疏表示模型,在计算残差向量的类别归属时引入频段方差信息;利用光谱信息散度从信息熵的角度挖掘重构光谱中的类别鉴定信息;在期望最大化算法模型中,将条件稀疏模型与光谱信息散度模型相结合,使算法具备迭代自更新的能力;将马尔可夫随机场引入加权条件稀疏表示算法,在算法时间复杂度不变的情况下,对高光谱图像的空间信息予以提取。仿真结果表明,该算法能够有效地提高分类精度,且在不同试验数据下具备良好的稳定性。 展开更多
关键词 图像处理 高光谱图像分类 加权条件稀疏表示 马尔可夫随机场
在线阅读 下载PDF
加权鉴别保持投影降维的非约束人脸识别研究 被引量:2
6
作者 王志强 童莹 +1 位作者 曹雪虹 任丽 《信号处理》 CSCD 北大核心 2019年第10期1762-1772,共11页
非约束环境下采集的人脸图像复杂多变,因稀疏保留投影(Sparse Preserving Projection,SPP)算法没有考虑到样本的局部结构使其降维效果不理想,针对该问题,本文提出了加权判别稀疏保留投影(Weighted Discriminant Sparse Preserving Proje... 非约束环境下采集的人脸图像复杂多变,因稀疏保留投影(Sparse Preserving Projection,SPP)算法没有考虑到样本的局部结构使其降维效果不理想,针对该问题,本文提出了加权判别稀疏保留投影(Weighted Discriminant Sparse Preserving Projection,WDSPP)算法。首先,引入样本类别标签和类内紧凑项,用以增强待测样本和同类样本之间的重构关系;其次,非控环境下样本质量参差不齐,考虑以样本距离权值约束稀疏重构系数,降低同类奇异样本的影响,进一步提高重构关系的准确度;最后,低维投影阶段增加全局约束因子,利用样本全局分布中隐含的鉴别信息使低维子空间分布更紧凑、更易于鉴别。在AR库、Extended Yale B库、LFW库和PubFig库上的大量实验结果表明,本文所提算法在复杂人脸环境下具有较好的识别结果。 展开更多
关键词 非约束人脸识别 稀疏保留投影 加权稀疏表示 降维
在线阅读 下载PDF
基于多特征融合矩阵分解的胃镜图像病灶检测
7
作者 杨国亮 黄剑琛 《现代电子技术》 2022年第3期69-72,共4页
胃镜检查过程中,医生通过内窥镜对病变部位的疾病诊断全靠医生的个人经验判断,给医生造成巨大的工作压力,因此提出一种基于稀疏约束的隐低秩表示模型的改进算法。在矩阵融合的基础算法中引入稀疏约束的隐低秩表示模型,提取数据的主特征... 胃镜检查过程中,医生通过内窥镜对病变部位的疾病诊断全靠医生的个人经验判断,给医生造成巨大的工作压力,因此提出一种基于稀疏约束的隐低秩表示模型的改进算法。在矩阵融合的基础算法中引入稀疏约束的隐低秩表示模型,提取数据的主特征和隐含特征来获取更多图像信息,应对样本数量较少的情况,并且采用加权非负稀疏表示分类方法(WNSLRRC)区分干扰区域和病灶区域,以图像隐含特征作为依据的加权低秩模型能更好地获得图像数据的全局结构。经过实验证明,该检测方法对病灶区域检测精度较高,具有一定的实用性,并且算法具有较好的抗扰性。 展开更多
关键词 非负低秩矩阵分解 胃镜图像 多特征融合 隐低秩表示 加权非负稀疏低秩表示分类 病灶检测 全局性 稀疏约束
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部