期刊文献+
共找到241篇文章
< 1 2 13 >
每页显示 20 50 100
点密度函数加权模糊C-均值算法的聚类分析 被引量:30
1
作者 刘小芳 曾黄麟 吕炳朝 《计算机工程与应用》 CSCD 北大核心 2004年第24期64-65,96,共3页
基于模糊C-均值算法具有对数据集进行等划分趋势的缺陷,文章利用数据点的密度大小作为权值,借助数据本身的分布特性,提出了一种新的加权模糊C-均值算法,该方法不仅在一定程度上克服了模糊C-均值算法的缺陷,而且具有良好的收敛性。
关键词 模糊c-均值算法 点密度函数 加权 模糊聚类分析
在线阅读 下载PDF
快速自适应非局部空间加权与隶属度连接的模糊C-均值噪声图像分割算法 被引量:13
2
作者 王小鹏 王庆圣 +1 位作者 焦建军 梁金诚 《电子与信息学报》 EI CSCD 北大核心 2021年第1期171-178,共8页
针对传统模糊C-均值聚类(FCM)算法难以对噪声图像进行分割的问题,该文提出一种快速自适应非局部空间加权与隶属度连接的模糊FCM抗噪图像分割算法。首先,利用一种非局部空间信息快速计算方法,将以图像所有像素为循环的原始非局部信息计... 针对传统模糊C-均值聚类(FCM)算法难以对噪声图像进行分割的问题,该文提出一种快速自适应非局部空间加权与隶属度连接的模糊FCM抗噪图像分割算法。首先,利用一种非局部空间信息快速计算方法,将以图像所有像素为循环的原始非局部信息计算方法,改为以搜索窗口尺寸为循环,利用空间位移图像与递归高斯滤波的计算方法,克服非局部空间信息计算复杂的问题;其次,计算原始图像与非局部信息项的差值的平方,将其作为非局部信息项的自适应权重,并将差值的平方作倒数变换,作为原始图像的自适应权重;最后,将每个聚类簇中所有像素隶属度之和的对数平方加入目标函数的分母,形成隶属度连接,减少目标函数迭代次数。含噪人工与自然图像分割实验表明,该算法在分割准确度、平均交并比、归一化互信息、运行时间与迭代次数等性能方面优于其他几种FCM算法。 展开更多
关键词 噪声图像分割 模糊c-均值聚类 非局部空间信息 自适应加权 隶属度连接
在线阅读 下载PDF
基于加权模糊c均值聚类与统计检验指导的多阈值图像自动分割算法 被引量:49
3
作者 高新波 李洁 姬红兵 《电子学报》 EI CAS CSCD 北大核心 2004年第4期661-664,共4页
图像分割是计算机视觉中一个重要的研究课题.本文提出一种基于直方图的多阈值灰度图像自动分割方法,该方法利用加权模糊c-均值聚类算法快速实现分割过程,同时通过单峰统计检验指导来自动确定多阈值的合适数目.实验结果表明了该方法的有... 图像分割是计算机视觉中一个重要的研究课题.本文提出一种基于直方图的多阈值灰度图像自动分割方法,该方法利用加权模糊c-均值聚类算法快速实现分割过程,同时通过单峰统计检验指导来自动确定多阈值的合适数目.实验结果表明了该方法的有效性. 展开更多
关键词 图像分割 聚类分析 加权模糊c-均值算法 统计检验
在线阅读 下载PDF
基于粒子群优化算法的模糊C-均值聚类 被引量:27
4
作者 张利彪 周春光 +2 位作者 马铭 刘小华 孙彩堂 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2006年第2期217-222,共6页
利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小... 利用粒子群优化(PSO)算法全局寻优、快速收敛的特点,结合模糊C-均值(FCM)算法提出一种新的模糊聚类算法.新算法用PSO算法代替了FCM算法的基于梯度下降的迭代过程,使算法具有很强的全局搜索能力,很大程度上避免了FCM算法易陷入局部极小的缺陷;同时也降低了FCM算法对初始值的敏感度.实验结果表明,与FCM相比本文算法聚类更为准确,效率更高. 展开更多
关键词 粒子群优化算法 模糊聚类 模糊c-均值算法
在线阅读 下载PDF
基于自适应模糊C-均值的增量式聚类算法 被引量:11
5
作者 张忠平 陈丽萍 +1 位作者 王爱杰 林志杰 《计算机工程》 CAS CSCD 北大核心 2009年第6期60-62,65,共4页
针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观... 针对模糊C-均值(FCM)算法不能很好地处理更新数据的缺点,提出基于FCM的自适应增量式聚类算法AIFCM。该算法结合密度和集合的思想,给出一种自动确定聚类初始中心的方法,能在聚类过程中动态改变聚类结果数,改善聚类的质量,减少人为的主观因素,获得比较符合用户需求的聚类结果,并能在原有聚类结果的基础上简单有效地处理更新数据,过滤噪声数据,较好地避免大量重复计算。 展开更多
关键词 聚类分析 模糊c-均值算法 增量式聚类 AIFCM算法
在线阅读 下载PDF
模糊C-均值聚类算法的优化 被引量:17
6
作者 熊拥军 刘卫国 欧鹏杰 《计算机工程与应用》 CSCD 北大核心 2015年第11期124-128,共5页
针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本... 针对传统模糊C-均值聚类算法(FCM算法)初始聚类中心选择的随机性和距离向量公式应用的局限性,提出一种基于密度和马氏距离优化的模糊C-均值聚类算法(Fuzzy C-Means Based on Mahalanobis and Density,FCMBMD算法)。该算法通过计算样本点的密度来确定初始聚类中心,避免了初始聚类中心随机选取而产生的聚类结果的不稳定;采用马氏距离计算样本集的相似度,以满足不同度量单位数据的要求。实验结果表明,FCMBMD算法在聚类中心、收敛速度、迭代次数以及准确率等方面具有良好的效果。 展开更多
关键词 聚类 模糊c-均值 密度函数 马氏距离 基于密度和马氏距离优化的模糊c-均值聚类(FCMBMD)算法
在线阅读 下载PDF
基于粒子群优化的模糊C-均值聚类改进算法 被引量:18
7
作者 蒲蓬勃 王鸽 刘太安 《计算机工程与设计》 CSCD 北大核心 2008年第16期4277-4279,共3页
针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从... 针对模糊C-均值聚类算法(FCM)存在易陷入局部优化的问题,将粒子群优化算法(PSO)和模糊C-均值聚类算法FCM相结合,提出了一种新的模糊聚类算法PSO-FCM。该算法使用PSO算法来代替FCM的迭代过程以实现模糊聚类,具有了很强的全局搜索能力,从而不用再为得到好的聚类效果而反复选择初值。仿真实验结果表明,提出的模糊聚类算法提高了FCM的搜索能力,具有更好的稳定性和健壮性,优化能力增强,提高了聚类的效率和效果。 展开更多
关键词 全局优化 模糊c-均值聚类算法 粒子群优化算法 聚类 粒子
在线阅读 下载PDF
改进的模糊C-均值聚类算法 被引量:24
8
作者 关庆 邓赵红 王士同 《计算机工程与应用》 CSCD 北大核心 2011年第10期27-29,88,共4页
为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索... 为了克服模糊C-均值(FCM)聚类算法易陷入局部极小值和对初始值敏感的缺点,提出了一种基于改进量子蚁群的模糊聚类算法。将量子计算原理和蚁群算法相结合来改进FCM算法。初期采用量子遗传算法生成信息素分布,后期利用蚁群算法的全局搜索性、并行计算性等特点避免聚类陷入局部最优解。实验证明该算法保证了种群的多样性,有较好的全局收敛性,克服了模糊C-均值聚类算法的不足,能有效解决未成熟收敛的问题,使聚类问题最终快速、有效地收敛到全局最优解。 展开更多
关键词 聚类分析 模糊c-均值聚类 蚁群算法 量子计算
在线阅读 下载PDF
基于模糊C-均值算法粗糙集理论的云模型在岩爆等级评价中的应用 被引量:25
9
作者 郝杰 侍克斌 +2 位作者 王显丽 白现军 陈功民 《岩土力学》 EI CAS CSCD 北大核心 2016年第3期859-866,874,共9页
岩爆等级评价具有模糊性和不确定性,而粗糙集理论的云模型对处理模糊性和不确定性问题具有独特优势,由此提出了基于模糊C均值(简称FCM)算法粗糙集的云模型理论在岩爆等级评价中的新模型。该模型选用岩石单轴抗压强度σ_c、洞室围岩最大... 岩爆等级评价具有模糊性和不确定性,而粗糙集理论的云模型对处理模糊性和不确定性问题具有独特优势,由此提出了基于模糊C均值(简称FCM)算法粗糙集的云模型理论在岩爆等级评价中的新模型。该模型选用岩石单轴抗压强度σ_c、洞室围岩最大的切向应力σ_θ、岩石单轴抗拉强度σ_t和岩石弹性能量指数W_(et)作为岩爆等级评价因子,依据岩爆分级标准计算各评价因子隶属于不同岩爆等级的云数字特征。同时,以国内外40例岩爆工程为研究对象,运用基于FCM算法的粗糙度理论进行因子属性重要性评价,计算各评价因子权重。根据正向正态云发生器,得到待评样本的综合确定度,由最大综合确定度判定岩爆级别。研究表明:该模型的评价结果与实际情况基本一致,具有一定的可行性,为岩爆预测提供了一种新的研究方法与思路。 展开更多
关键词 岩爆等级评价 云模型 粗糙集 模糊c-均值(FCM)算法 综合确定度
在线阅读 下载PDF
一种改进的模糊C-均值(FCM)聚类算法 被引量:13
10
作者 安良 胡勇 +1 位作者 胡良梅 孟玲玲 《合肥工业大学学报(自然科学版)》 CAS CSCD 2003年第3期354-358,共5页
模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:... 模糊C-均值(FCM)聚类算法受初始化影响较大,在迭代时容易陷入局部极小,鉴于遗传算法(GA)的并行全局搜索能力,文章将遗传算法引入进来对FCM聚类算法加以改进,并对所提出的新算法与经典算法的迭代步数和运行时间进行比较。实验结果表明:该算法与FCM聚类算法相比收敛速度更快,迭代步数更少。 展开更多
关键词 改进模糊c-均值聚类算法 FCM聚类算法 遗传算法 迭代步数 运行时间
在线阅读 下载PDF
基于数据加权策略的模糊C均值聚类算法 被引量:13
11
作者 周世波 徐维祥 柴田 《系统工程与电子技术》 EI CSCD 北大核心 2014年第11期2314-2319,共6页
针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把... 针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。 展开更多
关键词 模糊聚类 模糊C均值算法 数据加权
在线阅读 下载PDF
新的混合模糊C-均值聚类算法 被引量:6
12
作者 王浩 王秀友 陈蕴 《计算机工程与设计》 CSCD 北大核心 2008年第4期917-919,922,共4页
基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法。它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO)。将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新... 基于量子行为的粒子群算法(QPSO)是一种改进的粒子群优化算法。它使用的参数个数少,在解的收敛性和全局搜索能力上优于基本的粒子群算法(PSO)。将QPSO算法与模糊C-均值(FCM)算法相结合提出一种新的混合模糊C-均值聚类算法(QPSO-FCM),新算法代替了FCM算法的基于梯度下降的迭代过程,在一定程度上克服了FCM算法易陷入局部极小的缺陷,降低了FCM算法的初值敏感度。实验结果表明,改进后的新算法与FCM算法和PSO与FCM结合算法相比,具有良好的收敛性,聚类效果也有较好的改善。 展开更多
关键词 聚类 量子粒子群算法 粒子群算法 模糊c-均值算法 模糊聚类 加权
在线阅读 下载PDF
模糊c-均值算法和万有引力算法求解模糊聚类问题 被引量:14
13
作者 谷文祥 郭丽萍 殷明浩 《智能系统学报》 2011年第6期520-525,共6页
针对单纯使用模糊c-均值算法(FCM)求解模糊聚类问题的不足,首先,提出一种改进的万有引力搜索算法,通过一定概率按照不同方式对速度进行更新,有效增大了种群的搜索域.其次,提出了模糊万有引力搜索算法(FG-SA).最后,在模糊万有引力搜索算... 针对单纯使用模糊c-均值算法(FCM)求解模糊聚类问题的不足,首先,提出一种改进的万有引力搜索算法,通过一定概率按照不同方式对速度进行更新,有效增大了种群的搜索域.其次,提出了模糊万有引力搜索算法(FG-SA).最后,在模糊万有引力搜索算法(FGSA)和模糊c-均值算法(FCM)的基础上,提出了一种新算法(FGSAFCM)来求解模糊聚类问题,有效避免了单纯使用模糊c-均值算法时对初始值敏感且易于陷入局部最优的缺点.采用目标函数和有效性评价函数作为评价标准,选取10个经典数据集作为测试数据,实验结果表明,新算法比单一的模糊c-均值算法有更高的准确性和鲁棒性. 展开更多
关键词 模糊聚类 模糊c-均值算法 万有引力搜索算法 模糊万有引力搜索算法
在线阅读 下载PDF
基于粒子群模糊C-均值聚类的图像分割算法 被引量:12
14
作者 李丽丽 李明 刘希玉 《计算机工程与应用》 CSCD 北大核心 2009年第31期158-160,共3页
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-... 模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将粒子群优化算法(PSO)与模糊C-均值聚类算法相结合,实现了基于粒子群模糊C-均值聚类的图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 展开更多
关键词 图像分割 粒子群优化算法 模糊c-均值聚类算法 全局优化
在线阅读 下载PDF
基于PSO的模糊C-均值聚类算法的图像分割 被引量:7
15
作者 陈曦 李春月 +1 位作者 李峰 曹鹏 《计算机工程与应用》 CSCD 北大核心 2008年第18期181-182,185,共3页
根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法... 根据粒子群优化算法(PSO)强大的全局搜索能力,提出了用PSO算法优化模糊C均值聚类(FCM)的聚类中心的方法,有效地避免了传统的FCM对初始值及噪声数据敏感,容易陷入局部最优的缺点,同时图像分割的效果也得到了提高,性能也比传统的FCM方法更加稳定。实验结果反映了该方法的有效性。 展开更多
关键词 粒子群优化算法 模糊c-均值聚类 图像分割
在线阅读 下载PDF
基于多阶段的模糊C-均值算法的模糊聚类分析研究 被引量:7
16
作者 黄力明 吴小俊 王士同 《南京师大学报(自然科学版)》 CAS CSCD 1999年第4期19-22,共4页
对模糊聚类分析算法进行研究,在模糊C- 均值算法(FCM)的基础上加以改进,将聚类过程分为二个阶段,形成多阶段模糊C- 均值算法(MFCM),使其对Iris数据聚类.研究表明:多阶段的模糊C- 均值算法比模糊C- 均值算... 对模糊聚类分析算法进行研究,在模糊C- 均值算法(FCM)的基础上加以改进,将聚类过程分为二个阶段,形成多阶段模糊C- 均值算法(MFCM),使其对Iris数据聚类.研究表明:多阶段的模糊C- 均值算法比模糊C- 均值算法性能优越. 展开更多
关键词 隶属函数 模糊聚类分析 模糊c-均值算法
在线阅读 下载PDF
遗传+模糊C-均值混合聚类算法 被引量:23
17
作者 陈金山 韦岗 《电子与信息学报》 EI CSCD 北大核心 2002年第2期210-215,共6页
本文提出了一种新的结合遗传算法(GA)和模糊C^-均值算法(FCM)的混合聚类算法(HCA)。它通过对问题的解空间交替进行全局和局部搜索,达到快速收敛至全局最优解,较好地解决了GA在达到全局最优解前收敛慢和FCM算法容易陷入局部极小的问题。... 本文提出了一种新的结合遗传算法(GA)和模糊C^-均值算法(FCM)的混合聚类算法(HCA)。它通过对问题的解空间交替进行全局和局部搜索,达到快速收敛至全局最优解,较好地解决了GA在达到全局最优解前收敛慢和FCM算法容易陷入局部极小的问题。三组不同分布类型的数据聚类实验表明,该算法具有较好的通用性和有效性。 展开更多
关键词 混合聚类算法 遗传算法 模糊c-均值算法
在线阅读 下载PDF
基于改进遗传算法的加权模糊C均值聚类算法 被引量:11
18
作者 李同强 周天弋 吴斌 《计算机应用》 CSCD 北大核心 2009年第B12期260-262,共3页
针对模糊C均值(FCM)聚类算法具有初始聚类中心敏感和容易陷入局部最优的问题,提出了一种基于改进遗传算法(GA)的加权模糊C均值聚类算法,采用高斯变异算子,提高了遗传算法在每个峰值附近的局部搜索能力,用基于复相关系数的加权欧式距离... 针对模糊C均值(FCM)聚类算法具有初始聚类中心敏感和容易陷入局部最优的问题,提出了一种基于改进遗传算法(GA)的加权模糊C均值聚类算法,采用高斯变异算子,提高了遗传算法在每个峰值附近的局部搜索能力,用基于复相关系数的加权欧式距离代替欧式距离,改进了FCM算法的聚类目标函数。用改进的算法对国际标准测试数据Iris进行测试,实验结果表明改进后的算法具有更好的稳定性和健壮性,提高了聚类的效果。 展开更多
关键词 模糊C均值 遗传算法 复相关系数 加权欧式距离 高斯变异算子
在线阅读 下载PDF
基于遗传算法的模糊c-均值聚类算法 被引量:8
19
作者 欧阳 成卫 韩逢庆 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2004年第6期89-92,共4页
基于误差平方和准则的模糊c-均值算法(FCM)是一种典型的动态聚类算法,其求解结果通常是局部最优解;当模糊集合之间的并、交、包含运算采用传统定义时,在模糊c-均值聚类结果中还会存在无意义的聚类集。研究表明采用遗传算法进行模糊c-均... 基于误差平方和准则的模糊c-均值算法(FCM)是一种典型的动态聚类算法,其求解结果通常是局部最优解;当模糊集合之间的并、交、包含运算采用传统定义时,在模糊c-均值聚类结果中还会存在无意义的聚类集。研究表明采用遗传算法进行模糊c-均值聚类(Fuzzyc-meansalgorithmovergeneticalgorithm,GFCM)时,不仅能够消除无意义的聚类集,而且还在一定程度上避免模糊c-均值算法收敛到局部最优解,为此设计编码、选择、配对交叉、变异等步骤。测试数据实验表明采用GFCM算法的结果优于FCM算法。 展开更多
关键词 遗传算法 模糊c-均值聚类 GFCM
在线阅读 下载PDF
模拟退火与模糊C-均值聚类相结合的图像分割算法 被引量:17
20
作者 刘晓龙 张佑生 谢颖 《工程图学学报》 CSCD 北大核心 2007年第1期89-93,共5页
模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将模拟退火算法(SA)与模糊C-均值聚类算法相结合,在合理选择冷却进度表的基础... 模糊C-均值(FCM)聚类算法是一种结合无监督聚类和模糊集合概念的图像分割技术,比较有效,但存在着受初始聚类中心和隶属度矩阵影响,可能收敛到局部极小的缺点。将模拟退火算法(SA)与模糊C-均值聚类算法相结合,在合理选择冷却进度表的基础上,依据模糊C-均值聚类算法建立模拟退火算法的目标函数,实现了基于模拟退火的模糊C-均值聚类图像分割算法。实验表明,该方法具有搜索全局最优解的能力,因而可得到很好的图像分割结果。 展开更多
关键词 计算机应用 图像分割 模糊c-均值聚类算法 模拟退火算法
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部