针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图...针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法.展开更多
针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把...针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。展开更多
文摘针对模糊C有序均值聚类算法没有考虑图像空间信息,导致难以有效地分割含噪图像的问题,提出一种基于非局部信息和子空间的模糊C有序均值聚类(non-local information and subspace for fuzzy C-ordered means,SFCOM-NLS)算法.首先,利用图像中给定的相似邻域结构的像素提取当前像素的非局部空间信息;其次,计算每个像素的典型性,并对其进行排序,在每次迭代中更新像素的典型性,提高像素聚类的准确性,解决在聚类过程中存在相似类导致的误分类问题;最后,引入子空间聚类概念,为图像不同维度分配适当的权重,提高彩色图像的分割性能.在含噪合成图像和公开数据集BSDS500,MSRA100和AID上实验结果表明,所提算法的模糊划分系数、模糊划分熵、分割精度和标准化互信息平均值分别达到了95.00%,6.66%,98.77%和95.54%,均优于对比的同类算法.
文摘针对模糊C均值(fuzzy C-means,FCM)聚类算法没有考虑噪声样本点和样本数据的分布特征对聚类结果影响的不足,利用数据加权策略对FCM聚类算法进行改进。改进后的算法通过计算各样本点的密度值,将初始聚类中心限制在高密度样本点区域,并把样本点的密度值作为该点的权值,对聚类中心进行调整,突出高密度样本点在聚类中心调整中的影响力,从而达到提高聚类效果的目的。人造数据集和加州大学欧文分校(University of California-Irvine,UCI)真实数据集的实验结果表明,在不提高时间复杂度的同时,与FCM算法相比,基于数据加权策略的FCM算法聚类的准确率更高。