期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
面向互联网用户行为分析的加权概率融合贝叶斯网络研究 被引量:1
1
作者 王佳 张文波 朱宏博 《沈阳理工大学学报》 CAS 2023年第4期40-47,共8页
针对依靠单一算法训练互联网用户行为数据构建的贝叶斯网络(Bayesian Network,BN)计算耗时长、结构不稳定等问题,提出加权概率融合并行贝叶斯网络增量学习(WPFPBayes)算法。该算法根据自适应数据切片算法找出最优数据片尺寸,快速进行并... 针对依靠单一算法训练互联网用户行为数据构建的贝叶斯网络(Bayesian Network,BN)计算耗时长、结构不稳定等问题,提出加权概率融合并行贝叶斯网络增量学习(WPFPBayes)算法。该算法根据自适应数据切片算法找出最优数据片尺寸,快速进行并行BN模型训练;将数据切片上学习得到的若干子BN结构通过融合加权概率方法合并成一个全局BN模型;通过一种增量评分函数定量表示单位时间内网络模型与数据之间适应程度的变化情况;采用依据特定结点进行BN更新的措施达到新旧数据在网络中的平衡。仿真实验结果表明:WPFPBayes算法下得出的BN模型的效率及其准确率均高于其他常见算法;随着数据量的增加,BN模型数据表达的准确率和稳定性均得到提高,可以更有效检测网络用户的异常行为。 展开更多
关键词 加权概率融合贝叶斯网络 贝叶斯网络更新 自适应数据切片 网络用户行为
在线阅读 下载PDF
基于模糊贝叶斯网络的空中目标多传感器融合识别研究 被引量:13
2
作者 刘海燕 陈红林 +1 位作者 史志富 梁华强 《电光与控制》 北大核心 2009年第3期37-41,共5页
为了对充满不确定性与模糊性的空中目标识别数据进行处理,提高空中目标多传感器融合的准确性和可靠性,提出以模糊贝叶斯网络为基本结构的多传感器数据融合模型。该模型能够对清晰连续变量通过模糊化和去模糊化操作变换成离散变量,而且... 为了对充满不确定性与模糊性的空中目标识别数据进行处理,提高空中目标多传感器融合的准确性和可靠性,提出以模糊贝叶斯网络为基本结构的多传感器数据融合模型。该模型能够对清晰连续变量通过模糊化和去模糊化操作变换成离散变量,而且基于模糊贝叶斯网络的建模方法能够组合多种证据进行不确定性表达和推理。通过详细分析空中目标识别的推理规则,建立了空中目标识别的贝叶斯网络拓扑结构,提出了贝叶斯推理算法对多种证据进行融合计算的模型。识别实例表明该模型能够融合不同信息源的数据,有效地提高空中目标识别的效率。 展开更多
关键词 空中目标识别 模糊贝叶斯网络 多传感器融合 贝叶斯概率推理
在线阅读 下载PDF
基于WPNN与数据融合的损伤检测方法 被引量:4
3
作者 姜绍飞 付春 +1 位作者 陈仲堂 盛岩 《沈阳建筑大学学报(自然科学版)》 EI CAS 2005年第2期86-90,共5页
目的为了有效利用结构健康监测系统中的多源传感器数据信息,对复杂结构的健康状况进行诊断进而提高确诊率.方法利用概率神经网络(PNN)的贝叶斯推理与诊断能力及多传感器数据融合原理,将神经网络与数据融合有机结合,使两者优势互补,提出... 目的为了有效利用结构健康监测系统中的多源传感器数据信息,对复杂结构的健康状况进行诊断进而提高确诊率.方法利用概率神经网络(PNN)的贝叶斯推理与诊断能力及多传感器数据融合原理,将神经网络与数据融合有机结合,使两者优势互补,提出了复杂结构损伤检测技术及其在多层框架结构中损伤检测及诊断中的应用.结果提出了基于小波概率神经网络(WPNN)与数据融合的损伤检测方法.结论基于WPNN与数据融合的损伤检测方法是可行的、有效的. 展开更多
关键词 检测方法 结构健康监测系统 多传感器数据融合 概率神经网络 多层框架结构 贝叶斯推理 数据信息 健康状况 复杂结构 诊断能力 有机结合 优势互补 损伤检测 检测技术 结构损伤 确诊率
在线阅读 下载PDF
基于SqueezeNet深度网络的中药材粉末显微特征图像识别研究 被引量:13
4
作者 王一丁 石铎 +1 位作者 李耀利 蔡少青 《电子显微学报》 CAS CSCD 北大核心 2019年第2期130-138,共9页
中药材粉末显微特征图像具有复杂的纹理特点,传统算法难以构建高识别率的分类器。针对此提出一种基于SqueezeNet卷积网络的改进型双通道算法。首先,分离背景并提取感兴趣区,同时自动截取感兴趣中心区域1/4面积作为细粒度特征图像;其次,... 中药材粉末显微特征图像具有复杂的纹理特点,传统算法难以构建高识别率的分类器。针对此提出一种基于SqueezeNet卷积网络的改进型双通道算法。首先,分离背景并提取感兴趣区,同时自动截取感兴趣中心区域1/4面积作为细粒度特征图像;其次,对感兴趣区和细粒度特征图像进行尺度归一化,去均值,调整方差以及多角度旋转等预处理;之后,将处理后的感兴趣区和细粒度特征图像分别作为两个独立SqueezeNet深度网络的输入源,并对两个网络进行独立训练;最后,将得到的两个模型作为两个通道连接,识别结果利用概率加权算法进行融合。应用提出的改进型双通道算法对15种中药材粉末显微导管特征图像进行识别,正确识别率达到90. 33%。该方法具有较高的正确识别率和理想的识别效果。 展开更多
关键词 中药材粉末显微特征图像识别 显微结构特征 卷积神经网络 SqueezeNet 细粒度特征 概率加权融合
在线阅读 下载PDF
增强人工蜂群算法求解半导体最终测试调度问题 被引量:4
5
作者 吕阳 钱斌 +1 位作者 胡蓉 张梓琪 《电子学报》 EI CAS CSCD 北大核心 2021年第9期1708-1715,共8页
本文提出一种增强人工蜂群算法(Enhanced Artificial Bee Colony,EABC),用于最小化半导体最终测试调度问题(Semiconductor Final Testing Scheduling Problem,SFTSP)的最大完工时间.该算法采用混合启发式方法初始化种群,并利用前插式解... 本文提出一种增强人工蜂群算法(Enhanced Artificial Bee Colony,EABC),用于最小化半导体最终测试调度问题(Semiconductor Final Testing Scheduling Problem,SFTSP)的最大完工时间.该算法采用混合启发式方法初始化种群,并利用前插式解码策略来提高初始解的质量.在算法搜索阶段设计多种基于问题性质的探索策略和基于贝叶斯网络的概率模型对问题解空间进行深度与宽度的协同搜索.此外,提出基于重启策略的种群更新机制以加强算法跳出局部最优的能力.实验部分构造多种对比算法来验证EABC中各关键环节的有效性.通过基于实例的数值仿真以及与NFOA(Novel Fruit fly Optimization Algorithm)、KMEA(Knowledge-based Multi-agent Evolutionary Algorithm)和CCIWO(Cooperative Co-evolutionary Invasive Weed Optimization)的算法比较验证了EABC的有效性和鲁棒性. 展开更多
关键词 半导体最终测试 人工蜂群算法 启发式规则 贝叶斯网络 多策略融合 概率模型 排序模型
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部