为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测...为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.展开更多
为提高机器人动力学参数辨识的准确性,提出了一种基于迭代加权最小二乘(Iterative Reweighted Least Squares,IRLS)算法的辨识方法。首先推导了机器人的线性动力学模型,随后提出了一种改进摩擦模型,并设计了改进傅里叶级数作为激励轨迹...为提高机器人动力学参数辨识的准确性,提出了一种基于迭代加权最小二乘(Iterative Reweighted Least Squares,IRLS)算法的辨识方法。首先推导了机器人的线性动力学模型,随后提出了一种改进摩擦模型,并设计了改进傅里叶级数作为激励轨迹采集数据。为提升动力学参数辨识的准确性,在加权最小二乘法基础上进行改进,提出了IRLS算法对动力学参数进行辨识。最后以六自由度机器人为试验对象,进行了参数辨识试验。结果表明,基于IRLS算法的辨识方法与加权最小二乘法相比,前3个关节力矩误差的均方根(Root Mean Square,RMS)值降低了13.28%,后3个关节力矩误差的RMS值降低了28.57%,6个关节力矩误差的RMS值平均降低了17.15%,证明了基于IRLS算法的辨识方法的有效性。展开更多
文摘为提高非视距场景下超宽带(ultra‑wideband,UWB)定位精度,本文提出一种基于误差因子的改进加权最小二乘(weighted least square,WLS)算法.该算法利用测距值和实时信道冲激响应特征训练1维卷积神经网络,实现误差因子的准确预测;基于预测得到的误差因子设计改进WLS算法的加权矩阵,赋予不同基站合理的权重,以改善非视距场景下UWB定位性能.通过实测采集静态和动态定位数据对改进WLS算法进行性能验证.实验结果表明:视距场景下,改进WLS算法与最小二乘(least square,LS)算法、WLS算法定位性能相近;非视距场景下,改进WLS算法明显优于LS算法、WLS算法,能够有效抑制非视距误差.
文摘为提高机器人动力学参数辨识的准确性,提出了一种基于迭代加权最小二乘(Iterative Reweighted Least Squares,IRLS)算法的辨识方法。首先推导了机器人的线性动力学模型,随后提出了一种改进摩擦模型,并设计了改进傅里叶级数作为激励轨迹采集数据。为提升动力学参数辨识的准确性,在加权最小二乘法基础上进行改进,提出了IRLS算法对动力学参数进行辨识。最后以六自由度机器人为试验对象,进行了参数辨识试验。结果表明,基于IRLS算法的辨识方法与加权最小二乘法相比,前3个关节力矩误差的均方根(Root Mean Square,RMS)值降低了13.28%,后3个关节力矩误差的RMS值降低了28.57%,6个关节力矩误差的RMS值平均降低了17.15%,证明了基于IRLS算法的辨识方法的有效性。