期刊文献+
共找到2,631篇文章
< 1 2 132 >
每页显示 20 50 100
基于马氏距离的密度加权最小二乘孪生支持向量机
1
作者 吕莉 贺智鹏 +3 位作者 张法滢 张莹莹 康平 李院民 《江西师范大学学报(自然科学版)》 北大核心 2025年第1期37-48,共12页
最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支... 最小二乘孪生支持向量机基于欧氏距离判断样本相似性并搭建模型的方法未考虑样本不同维度的方差差异对决策超平面位置的影响,导致模型处理此类样本精度不高且对噪声样本敏感.鉴于此,该文提出一种基于马氏距离的密度加权最小二乘孪生支持向量机.该算法利用马氏距离替换欧氏距离构造密度加权策略,充分考虑点与分布的关系,给予噪声数据较低的权重,降低算法对噪声的敏感性;同时结合马氏距离核函数计算样本内协方差矩阵,消除样本特征值之间方差的差异,更准确地体现样本间的相关性,从而优化决策超平面.实验采用人工数据集和UCI数据集,实验结果表明:该算法比同类型分类算法具有更高的分类精确度和泛化能力,能够有效区分在样本中的噪声数据并赋予合适的权重值,提升分类器的鲁棒性. 展开更多
关键词 支持向量 马氏距离 核函数 密度加权 最小二乘损失函数
在线阅读 下载PDF
基于改进金豺算法优化最小二乘法支持向量机的磨削表面粗糙度预测
2
作者 朱文博 张淑权 +1 位作者 张梦梦 迟玉伦 《表面技术》 北大核心 2025年第16期165-181,共17页
目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔... 目的磨削过程中粗糙度直接影响产品质量,为有效预测工件磨削表面粗糙度,基于声发射和振动信号提出一种改进金豺算法(IGJO)优化最小二乘法支持向量(LSSVM)的磨削表面粗糙度预测方法。方法为增强信号特征与磨削表面粗糙度相关性,利用皮尔逊相关分析和主成分分析(PCA)对信号特征进行筛选,降低特征之间的多重共线性,降低模型复杂度;为改善磨削表面粗糙度预测模型的性能,对于金豺算法(GJO)易陷入局部最优问题,在GJO基础上引入佳点集初始化种群、非线性能量因子更新策略以及融合鲸鱼优化算法改进搜索策略,提升算法的初始种群多样性、收敛精度和全局搜索能力;为提高磨削表面粗糙度预测模型有效性,利用IGJO对LSSVM进行参数寻优,建立磨削表面粗糙度预测模型。结果通过轴承套圈内滚道磨削加工实验数据进行验证,结果表明IGJO-LSSVM磨削表面粗糙度预测模型能有效预测粗糙度值,预测精度为95.223%,RMSE值为0.0133,MAPE值为4.776%,R2值为0.956,均优于GJO-LSSVM、LSSVM和BP神经网络模型。结论通过IGJO优化后的LSSVM模型可实现磨削表面粗糙度有效预测,同时能够避免传统LSSVM容易陷入局部极小值的问题,对提高产品磨削质量具有重要意义。 展开更多
关键词 磨削表面粗糙度 轴承套圈 最小二乘支持向量 金豺算法
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测 被引量:1
3
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量机解耦的无轴承磁通切换电机转子径向磁悬浮逆系统控制
4
作者 林佳泷 周扬忠 +1 位作者 陈东远 梁彤伟 《电工技术学报》 北大核心 2025年第14期4534-4546,共13页
针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照... 针对无轴承磁通切换电机非线性、多变量、强耦合特性,该文提出一种转子径向磁悬浮解耦控制策略。首先,采用最小二乘支持向量机的方法对悬浮力模型中的耦合电磁力部分进行拟合补偿,实现悬浮系统初步解耦;然后,验证悬浮系统可逆性,并按照逆系统理论设计伪线性复合悬浮系统,进一步实现了悬浮系统的线性化解耦;最后,对解耦后的悬浮系统设计闭环控制器,对悬浮闭环系统稳定性进行理论分析。实验结果验证,所提控制策略实现了无轴承磁通切换电机悬浮系统的动态解耦,提升了悬浮系统的动、静态性能。 展开更多
关键词 无轴承磁通切换电 逆系统 最小乘支持向量 径向磁悬浮 解耦控制
在线阅读 下载PDF
基于半监督学习结合最小二乘支持向量机的蝴蝶兰生长期最佳环境模型构建
5
作者 陈俞帆 白芮羽 +3 位作者 陈邦云 王华 敬勇 李亚硕 《农业工程》 2025年第4期38-42,共5页
蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型... 蝴蝶兰是重要的观赏植物,生长环境对其生长发育具有显著影响。传统栽培方法多依赖经验,缺乏科学性和精准性。收集蝴蝶兰生长过程中的环境参数和生长状态指标,筛选关键特征,采用半监督学习结合最小二乘支持向量机方法,训练深度学习模型用于预测蝴蝶兰生长最佳环境条件。通过自学习方法,模型能够从大量未标记样本中筛选出置信度高的样本,增加训练样本数量,提高模型的泛化能力和预测准确性。试验结果表明,当概率阈值设置为97%时,模型准确性最高,均方根误差3.974、决定系数0.975。该模型可为蝴蝶兰的科学栽培提供新的解决方案。 展开更多
关键词 半监督学习 最小乘支持向量 环境模型 蝴蝶兰 智慧农业
在线阅读 下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:6
6
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫群优化算法 最小乘支持向量 软测量模型
在线阅读 下载PDF
基于改进最小二乘支持向量机组合模型的深基坑沉降变形预测 被引量:7
7
作者 刘清龙 吕颖慧 +1 位作者 秦磊 赵鹏 《济南大学学报(自然科学版)》 CAS 北大核心 2024年第1期8-14,共7页
为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量... 为了提高深基坑沉降变形预测精度,及时为深基坑支护施工提供指导,提出一种改进最小二乘支持向量机组合模型;通过引入自适应噪声完备集合经验模态分解方法分解原始深基坑沉降变形数据,并结合粒子群优化算法和遗传算法对最小二乘支持向量机进行参数寻优,对分解的数据分别训练、预测后再叠加,得到最终预测结果;应用所提出模型对济南市某深基坑的累积沉降量进行预测,同时与其他模型对比,验证所提出模型的实用性和优越性。结果表明:所提出模型预测深基坑累积沉降量的平均相对误差为0.035%,均方误差为0.0809 mm^(2),均方根误差为0.2838 mm,所提出模型的准确性远优于其他模型的;自适应噪声完备集合经验模态分解方法的引入更有利于在深基坑沉降变形预测方面发挥最小二乘支持向量机的优势。 展开更多
关键词 深基坑沉降变形 最小乘支持向量 经验模态分解 粒子群优化算法 遗传算法
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:2
8
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算法
在线阅读 下载PDF
一种基于密度加权的最小二乘支持向量机稀疏化算法 被引量:10
9
作者 司刚全 曹晖 +1 位作者 张彦斌 贾立新 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第10期11-15,共5页
针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同... 针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同时对支持向量样本邻域内的其他样本密度信息进行削减,从而避免相似样本被选中为支持向量;再选择剩余样本中具有最大可能贡献度的样本添加到支持向量集中,直到模型性能满足要求.仿真和实际应用表明,与Suykens提出的标准稀疏化算法相比,所提出的算法能有效剔除冗余支持向量,具有更好的稀疏性和鲁棒性. 展开更多
关键词 最小乘支持向量 密度加权 稀疏化 负荷
在线阅读 下载PDF
基于加权最小二乘支持向量机的温室小气候建模与仿真 被引量:7
10
作者 李晋 秦琳琳 +2 位作者 吴刚 苑媛 岳大志 《系统仿真学报》 EI CAS CSCD 北大核心 2008年第16期4232-4236,共5页
分析了温室小气候系统结构,采用加权最小二乘支持向量机回归方法在线建立温室小气候模型,并进行仿真研究,取得了较好的效果。最小二乘支持向量机中引入加权因子,使其回归估计对非高斯分布噪声及野点数据具有较好的鲁棒性。最后将此方法... 分析了温室小气候系统结构,采用加权最小二乘支持向量机回归方法在线建立温室小气候模型,并进行仿真研究,取得了较好的效果。最小二乘支持向量机中引入加权因子,使其回归估计对非高斯分布噪声及野点数据具有较好的鲁棒性。最后将此方法和带有智能监督级的渐消记忆递推增广最小二乘方法的在线建模及仿真结果进行了对比分析。 展开更多
关键词 温室 小气候 系统建模 支持向量 加权最小二乘
在线阅读 下载PDF
基于经验模态分解和加权最小二乘支持向量机的采空区地面塌陷预测 被引量:9
11
作者 佴磊 彭文 +1 位作者 袁明哲 周能娟 《吉林大学学报(地球科学版)》 EI CAS CSCD 北大核心 2011年第3期799-804,共6页
根据采空区路面塌陷数据的特性,提出了基于经验模态分解(EMD)和加权最小二乘支持向量机(WLS-SVM)预测采空区地面塌陷的新方法,并将其应用于吉林省长平高速公路因刘房子煤矿开采而引起的塌陷预测中。对实测的塌陷数据首先利用三次样条插... 根据采空区路面塌陷数据的特性,提出了基于经验模态分解(EMD)和加权最小二乘支持向量机(WLS-SVM)预测采空区地面塌陷的新方法,并将其应用于吉林省长平高速公路因刘房子煤矿开采而引起的塌陷预测中。对实测的塌陷数据首先利用三次样条插值得到平滑的信号曲线,然后用EMD对插值后的信号进行时空滤波降噪处理,得到反映塌陷趋势的剩余分量,最后将其馈入到WLS-SVM模型完成预测。预测给出了采空区塌陷的中长期预测结果,得到塌陷区的最终塌陷值为174.34 cm,预测结果与实际监测数据平均偏差约1.06%。对长平高速公路下伏采空区段的实测数据进行分析,并与最小二乘支持向量机(LS-SVM)和BP神经网络预测结果进行了对比。结果表明:基于EMD和WLS-SRM的采空区地面塌陷预测方法具有更高的预测精度和广泛的适用性。 展开更多
关键词 三次样条插值 经验模态分解 加权最小乘支持向量 采空区 塌陷
在线阅读 下载PDF
基于自适应双向加权最小二乘支持向量机的超短期负荷预测 被引量:27
12
作者 王岗 姜杰 +1 位作者 唐昆明 张太勤 《电力系统保护与控制》 EI CSCD 北大核心 2010年第19期142-146,共5页
应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快... 应用模糊加权最小二乘支持向量机对超短期负荷进行预测,为了体现离预测点越远的历史负荷数据对预测点负荷值的影响越不明显的特点,即'近大远小'的原则,在双向,即横向(输入样本)与纵向(训练样本集)引入时间域的隶属分布。并用快速留一法在线优化模型的参数,实现了相关参数的自适应选择,克服了应用固定系数进行预测的缺点。应用某地区的负荷数据进行了仿真预测,并应用不同的方法进行了对比。结果表明,所提出的方法与传统方法相比提高了超短期负荷的预测精度。 展开更多
关键词 最小乘支持向量 双向加权 快速留一法 超短期负荷预测 自适应参数选择
在线阅读 下载PDF
基于粗差判别的参数优化自适应加权最小二乘支持向量机在PX氧化过程参数估计中的应用 被引量:9
13
作者 陶莉莉 钟伟民 +1 位作者 罗娜 钱锋 《化工学报》 EI CAS CSCD 北大核心 2012年第12期3943-3950,共8页
针对软测量建模过程中数据可能存在粗大误差以及粗差数据对模型的性能产生的影响,提出了一种基于粗差判别的自适应加权最小二乘支持向量机回归方法 (WLS-SVM)。该方法首先根据3δ法则检测出样本中的显著误差并加以剔除,然后根据样本误... 针对软测量建模过程中数据可能存在粗大误差以及粗差数据对模型的性能产生的影响,提出了一种基于粗差判别的自适应加权最小二乘支持向量机回归方法 (WLS-SVM)。该方法首先根据3δ法则检测出样本中的显著误差并加以剔除,然后根据样本误差的大小自适应地调整权值,使得非显著误差对模型性能的影响大大降低。另外,由于最小二乘支持向量机的正则化参数和核宽度参数对模型的拟合精度和泛化能力有较大的影响,一般依靠经验和试算的方法进行估计,耗时且不准确,本文将模型的参数作为进化算法的优化问题,应用自适应免疫算法(AIGA)对参数进行优化选择。仿真实验表明,该方法对非线性系统的建模具有很好的效果。同时,将该方法应用于工业PX氧化建模过程中动力学参数的估计中,结果表明,基于粗差判别的参数优化自适应最小二乘支持向量机预测精度高,取得了较好的效果。 展开更多
关键词 粗差 加权最小乘支持向量 免疫算法 PX氧化过程建模
在线阅读 下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测 被引量:2
14
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子群优化(PSO) 最小乘支持向量(LSSVM) 腐蚀速率预测
在线阅读 下载PDF
自适应加权最小二乘支持向量机的空调负荷预测 被引量:11
15
作者 赵超 戴坤成 《重庆大学学报(自然科学版)》 EI CAS CSCD 北大核心 2016年第1期55-64,共10页
为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个... 为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个建模样本不同的权值,以克服异常样本点对模型性能的影响。建模过程中采用粒子群优化(PSO)算法对模型参数进行优化,以进一步提高模型预测精度。基于DeST模拟数据将AWLS-SVM方法应用于南方地区某办公建筑的逐时空调负荷预测中,并与径向基神经网络(RBFNN)模型、LS-SVM模型及WLS-SVM模型作比较,其平均预测绝对误差分别降低了51.84%、13.95%和3.24%,并进一步基于实际空调负荷数据将该方法应用于另一办公建筑的逐日空调负荷预测中。预测结果表明:AWLS-SVM预测的累积负荷误差为4.56MW,亦优于其他3类模型,证明了AWLS-SVM具有较高的预测精度和较好的泛化能力,是建筑空调负荷预测的一种有效方法。 展开更多
关键词 空调负荷 预测 自适应加权 最小二乘 支持向量 粒子群优化
在线阅读 下载PDF
双加权最小二乘支持向量机的短期风速预测 被引量:11
16
作者 潘学萍 史宇伟 张弛 《电力系统及其自动化学报》 CSCD 北大核心 2014年第1期13-17,66,共6页
提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰... 提出了双加权最小二乘支持向量机的短期风速预测方法。考虑到离预测点越远的历史风速数据对预测值的影响越弱,对训练样本中输入向量数据进行第1次加权,以体现不同元素对预测影响的差异。同时为区分训练样本的差异性,降低异常样本的干扰,对训练样本进行第2次加权。对双加权后的训练样本,采用加权最小二乘支持向量机模型进行预测,降低了对异常点的敏感度,实现了对不同样本的区别对待。根据某实测风速数据进行了风速预测,结果表明,所提方法能提高风速预测精度。 展开更多
关键词 风速预测 加权方法 加权最小乘支持向量 短期预测
在线阅读 下载PDF
基于自适应加权最小二乘支持向量机的青霉素发酵过程软测量建模 被引量:7
17
作者 赵超 李俊 +1 位作者 戴坤成 王贵评 《南京理工大学学报》 EI CAS CSCD 北大核心 2017年第1期100-107,共8页
针对生化过程软测量建模过程中样本数据可能包含的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(Adaptive weighted least squares support vector machine,AWLS-SVM)回归的软测量建模方法。该方法基于最小二乘支持... 针对生化过程软测量建模过程中样本数据可能包含的测量误差对模型性能的影响,提出一种自适应加权最小二乘支持向量机(Adaptive weighted least squares support vector machine,AWLS-SVM)回归的软测量建模方法。该方法基于最小二乘支持向量机模型,根据样本拟合误差,并结合改进的正态分布赋权规则,自适应地为每个建模样本分配不同的权值,以降低随机误差对模型性能的影响;同时采用混沌差分进化—模拟退火(Chaos differential evolution simulated annealing,CDE-SA)算法对模型参数进行优化选择,以提高模型的泛化能力。仿真实验表明,AWLS-SVM模型的预测精度及鲁棒性能优于最小二乘支持向量机(Least squares support vector machine,LS-SVM)和加权最小二乘支持向量机(Weighted least squares support vector machine,WLS-SVM)。利用Pensim仿真平台的数据,将AWLS-SVM方法用于青霉素发酵过程软测量建模,获得了较好的效果。 展开更多
关键词 加权最小乘支持向量 青霉素发酵过程 正态分布 混沌差分进化—模拟退火优化 软测量建模
在线阅读 下载PDF
基于加权最小二乘支持向量机改进算法的汽轮机通流部分故障诊断研究 被引量:6
18
作者 李亮 黄竹青 +2 位作者 冯磊华 王运民 李清 《汽轮机技术》 北大核心 2012年第2期129-132,共4页
汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差... 汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差确定加权系数,解决了WLS-SVM由于加权系数与模型支持值相互影响,样本在剔除与不剔除之间反复变化而不收敛的问题。实验结果表明该方法能有效地剔除异常样本,减少故障特征量的数目,提高了校正模型的稳健性及WLS-SVM特征预测的速度和预测的精度。 展开更多
关键词 最小乘支持向量 汽轮 通流部分 故障诊断
在线阅读 下载PDF
基于加权最小二乘支持向量机的月度负荷预测 被引量:4
19
作者 吴钰 王杰 《水电能源科学》 北大核心 2012年第5期174-177,共4页
考虑到实际电力负荷预测中各数据的重要程度并不相同,在标准最小二乘支持向量机回归算法的训练样本中设置权值系数,建立了加权最小二乘支持向量机模型,以实现样本的优化选择,达到历史数据"重近轻远"的学习效果;同时考虑到粒... 考虑到实际电力负荷预测中各数据的重要程度并不相同,在标准最小二乘支持向量机回归算法的训练样本中设置权值系数,建立了加权最小二乘支持向量机模型,以实现样本的优化选择,达到历史数据"重近轻远"的学习效果;同时考虑到粒子群优化算法收敛速度快和混沌运动遍历性、随机性等特点,提出了一种基于混沌思想的粒子群优化算法对模型参数进行优化,引入优势粒子和劣势粒子的权重自适应调节机制,使算法具有动态适应性。将改进的模型应用于江西省萍乡市月度负荷预测中,结果表明本文方法与常规方法相比降低了预测误差,且速度较快。 展开更多
关键词 月度负荷 预测 最小乘支持向量 加权 混沌粒子群
在线阅读 下载PDF
基于改进的加权最小二乘支持向量机的空间桁架建模 被引量:2
20
作者 欧阳军 闫桂荣 王腾 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第1期119-121,共3页
针对空间桁架结构的非线性因素导致其建模困难的问题,利用基于Hilbert变换的动力学系统非线性检测因子作为加权因子,提出了一种改进的加权最小二乘支持向量机非线性建模方法,不仅使支持向量机的解具有稀疏性和鲁棒性,而且对系统动力学... 针对空间桁架结构的非线性因素导致其建模困难的问题,利用基于Hilbert变换的动力学系统非线性检测因子作为加权因子,提出了一种改进的加权最小二乘支持向量机非线性建模方法,不仅使支持向量机的解具有稀疏性和鲁棒性,而且对系统动力学参数变化敏感,从而能比较快速而精确地实现动力学系统的非线性动态建模.数值仿真和桁架结构建模试验结果表明,该方法能较好地模拟结构的非线性特性,适用于动力学系统的非线性动态建模. 展开更多
关键词 加权最小乘支持向量 非线性建模 希尔伯特变换
在线阅读 下载PDF
上一页 1 2 132 下一页 到第
使用帮助 返回顶部