提出了一种负熵最小化加权最小二乘支持向量机分类模型,并应用于水下底质识别任务.该模型在原始最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)基础上引入权重,通过权重分布的负熵最小化调节和控制权重的稀疏度,然后...提出了一种负熵最小化加权最小二乘支持向量机分类模型,并应用于水下底质识别任务.该模型在原始最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)基础上引入权重,通过权重分布的负熵最小化调节和控制权重的稀疏度,然后使用该稀疏分布权重进一步进行加权LSSVM再学习,从而实现对原始LSSVM分类边界的调整优化.将负熵最小化加权LSSVM应用于水下钴结壳底质识别,实验结果表明,该负熵最小化加权LSSVM能显著减小钴结壳错判率和识别正确率,有效提高底质识别效果.展开更多
根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种新的加权方法应用到最小二乘支持向量机(LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向...根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种新的加权方法应用到最小二乘支持向量机(LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向量机(Weighted LeastSquare Support Vector Machine,WLS-SVM))参数的选择基于LS-SVM的最优参数,根据模型训练误差对参数进行二次寻优,进一步提高模型精度。利用测试函数验证了改进方法,对提高模型精度有明显效果;并将改进方法应用到实际生产装置的炉温软测量系统中,也取得了满意的应用效果。展开更多
汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差...汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差确定加权系数,解决了WLS-SVM由于加权系数与模型支持值相互影响,样本在剔除与不剔除之间反复变化而不收敛的问题。实验结果表明该方法能有效地剔除异常样本,减少故障特征量的数目,提高了校正模型的稳健性及WLS-SVM特征预测的速度和预测的精度。展开更多
针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和...针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和混合核函数方法对LSSVM算法进行优化,并用优化后的LSSVM求解农杆菌ATCC31749发酵过程动力学模型,结合鸟群算法对动力学模型参数进行寻优;然后拟合出溶氧体积分数和各参数之间的关联函数模型,并代入到动力学模型,建立起以溶氧浓度作为关键控制变量的发酵动力学模型;最后,用鸟群算法对模型进行寻优,寻找使得发酵产物浓度最大的最优溶氧过程控制策略。实验仿真结果表明,混合模型的预测精度得到提高,产多糖期溶氧体积分数控制为52%时,产物质量浓度最大,为48.85 g/L。该研究所建立的农杆菌发酵过程混合模型及其溶氧优化结果,为发酵工业上进一步通过最佳溶氧控制策略来提高多糖产量提供了方向。展开更多
最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS...最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。展开更多
文摘提出了一种负熵最小化加权最小二乘支持向量机分类模型,并应用于水下底质识别任务.该模型在原始最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)基础上引入权重,通过权重分布的负熵最小化调节和控制权重的稀疏度,然后使用该稀疏分布权重进一步进行加权LSSVM再学习,从而实现对原始LSSVM分类边界的调整优化.将负熵最小化加权LSSVM应用于水下钴结壳底质识别,实验结果表明,该负熵最小化加权LSSVM能显著减小钴结壳错判率和识别正确率,有效提高底质识别效果.
文摘根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种新的加权方法应用到最小二乘支持向量机(LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向量机(Weighted LeastSquare Support Vector Machine,WLS-SVM))参数的选择基于LS-SVM的最优参数,根据模型训练误差对参数进行二次寻优,进一步提高模型精度。利用测试函数验证了改进方法,对提高模型精度有明显效果;并将改进方法应用到实际生产装置的炉温软测量系统中,也取得了满意的应用效果。
文摘汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差确定加权系数,解决了WLS-SVM由于加权系数与模型支持值相互影响,样本在剔除与不剔除之间反复变化而不收敛的问题。实验结果表明该方法能有效地剔除异常样本,减少故障特征量的数目,提高了校正模型的稳健性及WLS-SVM特征预测的速度和预测的精度。
文摘最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。