期刊文献+
共找到1,597篇文章
< 1 2 80 >
每页显示 20 50 100
基于改进的加权最小二乘支持向量机的空间桁架建模 被引量:2
1
作者 欧阳军 闫桂荣 王腾 《西安交通大学学报》 EI CAS CSCD 北大核心 2007年第1期119-121,共3页
针对空间桁架结构的非线性因素导致其建模困难的问题,利用基于Hilbert变换的动力学系统非线性检测因子作为加权因子,提出了一种改进的加权最小二乘支持向量机非线性建模方法,不仅使支持向量机的解具有稀疏性和鲁棒性,而且对系统动力学... 针对空间桁架结构的非线性因素导致其建模困难的问题,利用基于Hilbert变换的动力学系统非线性检测因子作为加权因子,提出了一种改进的加权最小二乘支持向量机非线性建模方法,不仅使支持向量机的解具有稀疏性和鲁棒性,而且对系统动力学参数变化敏感,从而能比较快速而精确地实现动力学系统的非线性动态建模.数值仿真和桁架结构建模试验结果表明,该方法能较好地模拟结构的非线性特性,适用于动力学系统的非线性动态建模. 展开更多
关键词 加权最小二乘支持向量机 非线性建模 希尔伯特变换
在线阅读 下载PDF
基于加权最小二乘支持向量机的欠定盲源分离 被引量:1
2
作者 赵立权 刘珊珊 《电讯技术》 北大核心 2015年第11期1200-1205,共6页
为了进一步提高欠定盲源分离算法中混合矩阵估计方法的性能,提出了一种基于加权最小二乘支持向量机(SVM)的欠定盲源分离混合矩阵估计方法。该方法利用信号的方向角度特征估计出有效信源信号个数,然后采用加权最小二乘支持向量机方法获... 为了进一步提高欠定盲源分离算法中混合矩阵估计方法的性能,提出了一种基于加权最小二乘支持向量机(SVM)的欠定盲源分离混合矩阵估计方法。该方法利用信号的方向角度特征估计出有效信源信号个数,然后采用加权最小二乘支持向量机方法获得初始权值,每次将其中一个权值对应的样本点作为测试样本,其余点作为训练样本,依次对样本的误差变量进行更新,再根据权值计算公式实现所有权值的更新,进而确定最优分类平面,实现对观测信号的最优分类,最终估计出混合矩阵。实验结果表明,新算法是有效的,其平均误差是基于K-均值方法误差的0.2倍左右,是基于SVM算法平均误差的0.5倍左右。 展开更多
关键词 欠定盲源分离 加权最小二乘支持向量机 K-均值聚类 矩阵估计
在线阅读 下载PDF
基于加权最小二乘支持向量机的应急物资需求预测方法 被引量:5
3
作者 刘文博 《物流技术》 2015年第18期163-166,180,共5页
针对应急物资需求量的预测问题,提出了一种改进的加权最小二乘支持向量机预测建模方法。在该方法中,各数据样本的权重可以根据最小二乘支持向量机的学习结果进行不断的自适应迭代修正,从而消除包含误差的数据样本对预测模型的影响。基... 针对应急物资需求量的预测问题,提出了一种改进的加权最小二乘支持向量机预测建模方法。在该方法中,各数据样本的权重可以根据最小二乘支持向量机的学习结果进行不断的自适应迭代修正,从而消除包含误差的数据样本对预测模型的影响。基于实际救灾数据的测试结果表明了所提出方法的有效性。 展开更多
关键词 应急物资需求预测 加权最小二乘支持向量机 遗传算法
在线阅读 下载PDF
负熵最小化加权最小二乘支持向量机及其应用
4
作者 杨勃 邵泉铭 《湖南理工学院学报(自然科学版)》 CAS 2017年第3期27-32,66,共7页
提出了一种负熵最小化加权最小二乘支持向量机分类模型,并应用于水下底质识别任务.该模型在原始最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)基础上引入权重,通过权重分布的负熵最小化调节和控制权重的稀疏度,然后... 提出了一种负熵最小化加权最小二乘支持向量机分类模型,并应用于水下底质识别任务.该模型在原始最小二乘支持向量机(Least Square Support Vector Machine,LSSVM)基础上引入权重,通过权重分布的负熵最小化调节和控制权重的稀疏度,然后使用该稀疏分布权重进一步进行加权LSSVM再学习,从而实现对原始LSSVM分类边界的调整优化.将负熵最小化加权LSSVM应用于水下钴结壳底质识别,实验结果表明,该负熵最小化加权LSSVM能显著减小钴结壳错判率和识别正确率,有效提高底质识别效果. 展开更多
关键词 加权最小二乘支持向量机 负熵 稀疏权重 钴结壳识别 底质识别
在线阅读 下载PDF
改进的加权最小二乘支持向量机在德士古炉温软测量中的应用 被引量:3
5
作者 笪勇 侍洪波 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第5期717-722,共6页
根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种新的加权方法应用到最小二乘支持向量机(LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向... 根据某企业德士古气化炉装置在线估计炉温的需要,将现场数据采样样本中的离群点分为高杠杆点和高残差点两类,将一种新的加权方法应用到最小二乘支持向量机(LS-SVM),使其对两种离群点都具有抑制作用,提高模型鲁棒性。加权最小二乘支持向量机(Weighted LeastSquare Support Vector Machine,WLS-SVM))参数的选择基于LS-SVM的最优参数,根据模型训练误差对参数进行二次寻优,进一步提高模型精度。利用测试函数验证了改进方法,对提高模型精度有明显效果;并将改进方法应用到实际生产装置的炉温软测量系统中,也取得了满意的应用效果。 展开更多
关键词 软测量 德士古炉温 加权最小二乘支持向量机 参数次优化
在线阅读 下载PDF
基于加权最小二乘支持向量机改进算法的汽轮机通流部分故障诊断研究 被引量:6
6
作者 李亮 黄竹青 +2 位作者 冯磊华 王运民 李清 《汽轮机技术》 北大核心 2012年第2期129-132,共4页
汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差... 汽轮机通流部分故障特征数据较多、故障类型复杂,很难建立精确的机理模型。提出一种基于加权最小二乘支持向量机(Weighted Least Squares Support Vector Machines,WLS-SVM)的改进算法,该算法用输出变量的留一交叉检验误差取代原有误差确定加权系数,解决了WLS-SVM由于加权系数与模型支持值相互影响,样本在剔除与不剔除之间反复变化而不收敛的问题。实验结果表明该方法能有效地剔除异常样本,减少故障特征量的数目,提高了校正模型的稳健性及WLS-SVM特征预测的速度和预测的精度。 展开更多
关键词 最小乘支持向量 汽轮 通流部分 故障诊断
在线阅读 下载PDF
K聚类加权最小二乘支持向量机在分类中的应用 被引量:1
7
作者 许贺楠 添玉 黄道 《华东理工大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第2期300-304,共5页
数据分类作为模式识别、故障诊断技术的基础,在实际应用中常常由于系统的非线性、噪声性以及样本的不平衡采集,使得常规的分类算法存在一定的局限性。将最小二乘加权支持向量机用于分类问题,利用K聚类算法分析样本间内在关系从而确定权... 数据分类作为模式识别、故障诊断技术的基础,在实际应用中常常由于系统的非线性、噪声性以及样本的不平衡采集,使得常规的分类算法存在一定的局限性。将最小二乘加权支持向量机用于分类问题,利用K聚类算法分析样本间内在关系从而确定权值系数,可以很好地减小噪声影响,补偿不同类样本数目上的不平衡,减少训练时间,提高分类正确率。通过一个图像识别过程中多类别分类实例,证明了算法在分类问题中的有效性。该方法可以成为现有方法的有效补充分析工具。 展开更多
关键词 K聚类 支持向量 加权系数 分类
在线阅读 下载PDF
自适应加权最小二乘支持向量机回归及应用 被引量:5
8
作者 崔文同 林文才 颜学峰 《石油化工高等学校学报》 CAS 2009年第4期84-88,共5页
针对软测量建模样本中数据难以避免存在粗差、以及粗差数据对模型性能的影响,提出了一种自适应加权最小二乘支持向量机(AWLS-SVM)回归建模方法。AWLS-SVM基于建模样本数据,根据最小二乘支持向量机回归模型的拟合残差确定各样本的残差权... 针对软测量建模样本中数据难以避免存在粗差、以及粗差数据对模型性能的影响,提出了一种自适应加权最小二乘支持向量机(AWLS-SVM)回归建模方法。AWLS-SVM基于建模样本数据,根据最小二乘支持向量机回归模型的拟合残差确定各样本的残差权值,根据样本的空间分布确定杠杆权值,进而通过迭代运算,自适应确定各建模样本的权值,在有效减小粗差点对模型性能影响的同时,保留了其所提供的有效信息。仿真实验表明,AWLS-SVM能有效克服粗差样本数据的影响,其模型的预测性能明显优于LS-SVM和径向基函数网络。最后,应用AWLS-SVM建立粗对苯二甲酸中4-CBA含量软测量模型,获得满意结果。 展开更多
关键词 粗差 加权 最小乘支持向量 软测量
在线阅读 下载PDF
基于机理模型和模糊加权最小二乘支持向量机(LSSVM)算法的农杆菌发酵过程混合建模与优化 被引量:5
9
作者 邵玉倩 宗原 +1 位作者 刘以安 刘登峰 《食品与发酵工业》 CAS CSCD 北大核心 2019年第7期65-73,共9页
针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和... 针对农杆菌ATCC31749发酵法产凝胶多糖过程中产物质量浓度预测精度不高问题,提出一种基于模糊加权最小二乘支持向量机(least squares support vector machine,LSSVM)算法和机理模型相结合的混合建模新方法。首先通过添加模糊加权思想和混合核函数方法对LSSVM算法进行优化,并用优化后的LSSVM求解农杆菌ATCC31749发酵过程动力学模型,结合鸟群算法对动力学模型参数进行寻优;然后拟合出溶氧体积分数和各参数之间的关联函数模型,并代入到动力学模型,建立起以溶氧浓度作为关键控制变量的发酵动力学模型;最后,用鸟群算法对模型进行寻优,寻找使得发酵产物浓度最大的最优溶氧过程控制策略。实验仿真结果表明,混合模型的预测精度得到提高,产多糖期溶氧体积分数控制为52%时,产物质量浓度最大,为48.85 g/L。该研究所建立的农杆菌发酵过程混合模型及其溶氧优化结果,为发酵工业上进一步通过最佳溶氧控制策略来提高多糖产量提供了方向。 展开更多
关键词 农杆菌发酵 理模型 最小乘支持向量 混合建模 鸟群算法
在线阅读 下载PDF
基于加权最小二乘支持向量机的月度负荷预测
10
作者 吴钰 王杰 《水电能源科学》 北大核心 2012年第5期174-177,共4页
考虑到实际电力负荷预测中各数据的重要程度并不相同,在标准最小二乘支持向量机回归算法的训练样本中设置权值系数,建立了加权最小二乘支持向量机模型,以实现样本的优化选择,达到历史数据"重近轻远"的学习效果;同时考虑到粒... 考虑到实际电力负荷预测中各数据的重要程度并不相同,在标准最小二乘支持向量机回归算法的训练样本中设置权值系数,建立了加权最小二乘支持向量机模型,以实现样本的优化选择,达到历史数据"重近轻远"的学习效果;同时考虑到粒子群优化算法收敛速度快和混沌运动遍历性、随机性等特点,提出了一种基于混沌思想的粒子群优化算法对模型参数进行优化,引入优势粒子和劣势粒子的权重自适应调节机制,使算法具有动态适应性。将改进的模型应用于江西省萍乡市月度负荷预测中,结果表明本文方法与常规方法相比降低了预测误差,且速度较快。 展开更多
关键词 月度负荷 预测 最小乘支持向量 加权 混沌粒子群
在线阅读 下载PDF
基于最小二乘支持向量机和车辆荷载监测数据的悬索桥吊索疲劳寿命预测
11
作者 曾国良 邓扬 《桥梁建设》 北大核心 2025年第1期41-48,共8页
针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数... 针对传统吊索疲劳寿命计算方法计算效率低、无法考虑交通量增长的问题,基于最小二乘支持向量机(LSSVM)和车辆荷载监测数据进行悬索桥吊索疲劳寿命预测研究。以某大跨度双塔单跨悬索桥为背景,采用LSSVM建立吊索疲劳损伤与车辆荷载监测数据的相关性模型,建模过程中考虑LSSVM模型输入与输出的最优模式以及训练数据长度;建立1根吊索(以29号吊索为例)与其它吊索的日疲劳损伤之间的相关性模型,预测其它吊索的疲劳损伤;考虑日车流量和等效车总重的增长,进行吊索疲劳寿命预测。结果表明:对于29号吊索的4种LSSVM模型,模型Ⅳ的边界条件较其它3种模型更为合理,测试数据的平均相对误差低于模型Ⅰ~Ⅲ;该方法将日疲劳损伤与车辆荷载监测数据进行直接关联;LSSVM相关性模型的预测能力依赖于训练样本的数量,当训练数据长度为284 d时,模型Ⅳ的预测能力较强,其平均相对误差低于5.5%;同时考虑日车流量和等效车总重增长时,疲劳累积损伤显著增长。 展开更多
关键词 悬索桥 吊索 结构健康监测 车辆荷载 疲劳损伤 疲劳寿命 最小乘支持向量 相关性模型
在线阅读 下载PDF
基于最小二乘支持向量回归的新型电力系统电能需求预测算法
12
作者 牛华忠 李校莹 +2 位作者 史英 李晨辉 薛万磊 《消费电子》 2025年第9期116-118,共3页
电能需求预测过程中,对电能数据采取了单一的数值处理方式,导致电能需求量预测效果不佳。为此,本文设计了一种基于最小二乘支持向量回归的新型电力系统电能需求预测算法。通过对电能需求变化曲线进行特征分析,将影响电能需求的因素进行... 电能需求预测过程中,对电能数据采取了单一的数值处理方式,导致电能需求量预测效果不佳。为此,本文设计了一种基于最小二乘支持向量回归的新型电力系统电能需求预测算法。通过对电能需求变化曲线进行特征分析,将影响电能需求的因素进行归一化计算和编码处理,在最小二乘支持向量回归的支持下,设置电能需求预测初始参数,构建电能需求预测模型,并在此基础上,生成电能需求预测算法。仿真实验结果表明,与现有新型电力系统需求预测算法相比,本文设计的基于最小二乘支持向量回归的新型电力系统电能需求预测算法具有良好的预测性能,能够精确预测电能需求量。 展开更多
关键词 最小乘支持向量回归 新型电力系统 电能需求预测 算法设计
在线阅读 下载PDF
基于遗传算法优化最小二乘支持向量机的矿工疲劳程度识别模型 被引量:1
13
作者 田水承 任治鹏 毛俊睿 《矿业安全与环保》 CAS 北大核心 2024年第4期110-116,共7页
为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后... 为精准识别矿工疲劳程度,减少因疲劳引发的煤矿人因事故,提出了一种基于遗传算法(GA)优化最小二乘支持向量机(LSSVM)的矿工疲劳程度识别模型。首先,通过疲劳诱发试验采集矿工心电数据,利用Friedman检验优选矿工疲劳程度的特征指标;然后,采用主成分分析法对选取的特征指标进行降维处理,建立表征矿工疲劳程度的特征集;在此基础上,利用遗传算法优化最小二乘支持向量机的关键参数,构建矿工疲劳程度识别模型。结果表明:选取的矿工疲劳程度特征指标能够有效反映矿工的疲劳程度;相较GA-SVM和LSSVM模型,融合GA-LSSVM模型可显著提高矿工疲劳程度的识别准确率(平均识别准确率为96.87%)。构建的矿工疲劳程度识别模型可较为高效地识别矿工的疲劳程度,对煤矿人因事故的防控具有一定的现实指导意义。 展开更多
关键词 矿工 疲劳识别 心电信号 最小乘支持向量 遗传算法
在线阅读 下载PDF
一种基于密度加权的最小二乘支持向量机稀疏化算法 被引量:10
14
作者 司刚全 曹晖 +1 位作者 张彦斌 贾立新 《西安交通大学学报》 EI CAS CSCD 北大核心 2009年第10期11-15,共5页
针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同... 针对最小二乘支持向量机失去标准支持向量机稀疏特性的问题,提出了一种基于密度加权的稀疏化算法.首先计算样本的密度信息,对样本估计误差进行密度加权获得该样本对模型的可能贡献度;然后选取具有最大可能贡献度的样本作为支持向量,同时对支持向量样本邻域内的其他样本密度信息进行削减,从而避免相似样本被选中为支持向量;再选择剩余样本中具有最大可能贡献度的样本添加到支持向量集中,直到模型性能满足要求.仿真和实际应用表明,与Suykens提出的标准稀疏化算法相比,所提出的算法能有效剔除冗余支持向量,具有更好的稀疏性和鲁棒性. 展开更多
关键词 最小乘支持向量 密度加权 稀疏化 负荷
在线阅读 下载PDF
具有间隔分布优化的最小二乘支持向量机
15
作者 刘玲 巩荣芬 +1 位作者 储茂祥 刘历铭 《微电子学与计算机》 2024年第8期1-9,共9页
最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LS... 最小二乘支持向量机(Least Squares Support Vector Machine,LSSVM)通过求解一个线性等式方程组来提高支持向量机(Support Vector Machine,SVM)的运算速度。但是,LSSVM没有考虑间隔分布对于LSSVM模型的影响,导致其精度较低。为了增强LSSVM模型的泛化性能,提高其分类能力,提出一种具有间隔分布优化的最小二乘支持向量机(LSSVM with margin distribution optimization,MLSSVM)。首先,重新定义间隔均值和间隔方差,深入挖掘数据的间隔分布信息,增强模型的泛化性能;其次,引入权重线性损失,进一步优化了间隔均值,提升模型的分类精度;然后,分析目标函数,剔除冗余项,进一步优化间隔方差;最后,保留LSSVM的求解机制,保障模型的计算效率。实验表明,新提出的分类模型具有良好的泛化性能和运行时间。 展开更多
关键词 最小乘支持向量 大间隔分布 间隔分布优化 权重线性损失
在线阅读 下载PDF
基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测 被引量:2
16
作者 秦宁宁 《造纸科学与技术》 2024年第1期42-47,共6页
造纸工控网络的数据特征具有复杂性和多样性,对于高隐蔽性入侵行为,其特征可能被混杂在正常操作和噪声中,增加了检测的难度。为此,提出基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测方法。首先,使用CEEMD算法对网络数据进行分... 造纸工控网络的数据特征具有复杂性和多样性,对于高隐蔽性入侵行为,其特征可能被混杂在正常操作和噪声中,增加了检测的难度。为此,提出基于最小二乘支持向量机的造纸工控网络高隐蔽性入侵检测方法。首先,使用CEEMD算法对网络数据进行分解,得到一系列固有模态分量(IMF),利用排列熵对IMF分量进行分析,确定高噪声IMF分量;使用小波降噪对高噪声IMF分量展开抗干扰处理。然后,使用互信息特征选择方法对抗干扰处理后的入侵数据进行特征提取。最后,将提取到的入侵数据特征作为输入数据,通过最小二乘支持向量机(LS-SVM)建立一个判别函数,该函数根据输入数据的特征值进行分类,并判断网络中是否存在高隐蔽性入侵行为。实验结果表明,所提方法最高入侵检测准确率达到0.98,Kappa统计量最大为0.99,表明所提方法的数据处理效果好、网络入侵检测精度高。 展开更多
关键词 网络入侵检测 最小乘支持向量 小波阈值降噪 排列熵 互信息特征选择
在线阅读 下载PDF
基于最小二乘加权支持向量机的个人信用预测模型研究 被引量:2
17
作者 田博 覃正 《运筹与管理》 CSCD 2008年第4期89-95,共7页
针对不同类别样本数差异和不同误分代价的分类问题,提出了一种基于最小二乘加权支持向量机的分类预测方法。在最小二乘加权支持向量机的基础上,考虑不同类别样本数差异和不同误分代价,提出了新的最小二乘加权支持向量机分类模型,构造了... 针对不同类别样本数差异和不同误分代价的分类问题,提出了一种基于最小二乘加权支持向量机的分类预测方法。在最小二乘加权支持向量机的基础上,考虑不同类别样本数差异和不同误分代价,提出了新的最小二乘加权支持向量机分类模型,构造了新的最优分类函数。将该模型应用于个人信用预测实验,与已有方法的对比实验结果表明,提出的模型在解决不同类别样本数差异和不同误分代价的个人信用预测问题时,有效地降低了总误分代价,提高了个人信用预测精确度。 展开更多
关键词 最小乘支持向量 加权支持向量 类别差异 误分代价 个人信用预测
在线阅读 下载PDF
基于最小二乘支持向量机的农村土地利用空间优化配置方法及实例分析 被引量:2
18
作者 黄晓磊 冯长委 《现代农业科技》 2024年第8期185-188,共4页
因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,... 因为农村各类用地数据具有样本小、非线性等特点,导致土地利用空间配置结果的适宜性较差,所以本文提出基于最小二乘支持向量机的农村土地利用空间优化配置方法。基于最小二乘支持向量机预测农村土地利用空间格局,得到各类用地面积数据,对各类用地进行满足经济效益与生态效益最大化的多目标函数的优化配置。实例结果表明,农村土地利用空间优化配置结果中各用地类型高度适宜区域的面积占比均超过75%,证实了设计方法的合理性。 展开更多
关键词 最小乘支持向量 农村土地 土地利用 空间优化配置
在线阅读 下载PDF
基于特征加权FDCT和模糊最小二乘支持向量机的虹膜识别算法 被引量:3
19
作者 何振红 《电信科学》 北大核心 2016年第3期92-98,共7页
为了克服小波变换在二维空间分析的缺陷,提出了基于快速离散曲波(Curvelet)变换的虹膜识别改进算法。利用能有效捕捉图像边缘信息的Curvelet变换对虹膜图像进行分解,提取低频子带系数矩阵的均值方差和高频子带能量,然后根据不同子带特... 为了克服小波变换在二维空间分析的缺陷,提出了基于快速离散曲波(Curvelet)变换的虹膜识别改进算法。利用能有效捕捉图像边缘信息的Curvelet变换对虹膜图像进行分解,提取低频子带系数矩阵的均值方差和高频子带能量,然后根据不同子带特征的分类能力不同,对各子带特征的离散度进行加权,为分类能力较强的特征向量赋予较大权值,构成虹膜图像的特征向量。利用最优二叉树多类模糊最小二乘支持向量机分类器进行分类与识别。仿真实验结果表明,该算法具有较高的识别性能,具有可行性。 展开更多
关键词 虹膜识别 特征加权 快速离散曲波变换 模糊最小乘支持向量 最优叉树
在线阅读 下载PDF
基于最小二乘支持向量机的数控机床热误差预测 被引量:39
20
作者 林伟青 傅建中 +1 位作者 许亚洲 陈子辰 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2008年第6期905-908,共4页
为实现数控机床热误差的补偿控制,提出基于最小二乘支持向量机进行数控机床热误差建模预测的方法.根据最小二乘支持向量机回归预测的原理,优化选择最小二乘支持向量机参数,对数控车床热误差进行最小二乘支持向量机建模.通过测量数控车... 为实现数控机床热误差的补偿控制,提出基于最小二乘支持向量机进行数控机床热误差建模预测的方法.根据最小二乘支持向量机回归预测的原理,优化选择最小二乘支持向量机参数,对数控车床热误差进行最小二乘支持向量机建模.通过测量数控车床主轴温升值与主轴热变形量,将获得的数据进行最小二乘支持向量机建模训练,以建立机床热误差预测模型.实验结果表明,该模型能有效描述热动态误差,与最小二乘法建模进行比较,结果显示,基于最小二乘支持向量机的数控机床热误差预测模型精度高、泛化能力强;采用最小二乘支持向量机得到的预测模型可用于数控机床热误差实时补偿,以提高机床的加工精度.. 展开更多
关键词 支持向量 最小乘支持向量 热误差 预测
在线阅读 下载PDF
上一页 1 2 80 下一页 到第
使用帮助 返回顶部