期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
基于多目标优化加权软投票集成算法的信用债违约预警研究 被引量:2
1
作者 郑怡昕 王重仁 《现代电子技术》 北大核心 2024年第8期43-48,共6页
为了提高信用债违约预测的准确性和稳定性,便于金融风险管理,以2014年1月1日—2021年12月31日的信用债为研究对象,提出一种基于多目标优化的加权软投票集成算法。该算法通过计算每个基分类器的模糊密度来量化其识别能力,并使用多目标粒... 为了提高信用债违约预测的准确性和稳定性,便于金融风险管理,以2014年1月1日—2021年12月31日的信用债为研究对象,提出一种基于多目标优化的加权软投票集成算法。该算法通过计算每个基分类器的模糊密度来量化其识别能力,并使用多目标粒子群算法来求解基分类器的权重。将所提算法与其他单一分类器如支持向量机、逻辑回归、高斯贝叶斯、MLP,以及其他集成算法如投票类集成算法(voting)和stacking算法进行比较,采用期望PFI算法进行特征重要度分析。结果表明,加权软投票集成算法在信用债违约预测中表现出色,不仅提升了单一算法的性能,且相对于其他集成算法,具有更高的准确性、精确度和AUC值。违约前主体评级、交易所、违约前债项评级、总资产周转率、货币资金、净资产增长率、经营活动现金流量占营收比、GDP、PPI、注册地、短期国债利率、宏观经济景气指数(先行指数)、债券类型和所属行业的特征重要度较高,在信用债违约中值得关注。该研究可为金融风险预测提供一种有效方法,对于投资者和金融机构的风险预警具有重要参考意义。 展开更多
关键词 金融风险管理 信用债违约预警 加权投票集成算法 多目标优化 模糊密度 期望PFI算法
在线阅读 下载PDF
大学基础课课程成绩加权投票预测模型研究 被引量:9
2
作者 陈佳明 骆力明 宋洁 《现代电子技术》 北大核心 2020年第1期93-98,共6页
针对教育领域特定应用场景,利用数据挖掘技术处理教育数据是目前热点研究问题之一。课程成绩预测指对一门课程学生的期末成绩进行预测,其关键问题是通过选取合适的学生特征和确定最优的预测算法来构建预测准确率高的模型。针对大学基础... 针对教育领域特定应用场景,利用数据挖掘技术处理教育数据是目前热点研究问题之一。课程成绩预测指对一门课程学生的期末成绩进行预测,其关键问题是通过选取合适的学生特征和确定最优的预测算法来构建预测准确率高的模型。针对大学基础课的特点,从主客观两方面选择特征,对比了4个效果最优的课程成绩预测分类算法,以准确率较高的算法构成加权投票集成算法,发现加权投票集成算法的预测准确率和AP值最高,为利用数据挖掘技术实现课程成绩预测提供了一种有效的方法。 展开更多
关键词 成绩预测模型 教育数据挖掘 加权投票集成算法 模型构建 大学基础课 分类算法
在线阅读 下载PDF
智能启发算法在机器学习中的应用研究综述 被引量:15
3
作者 沈焱萍 郑康锋 +1 位作者 伍淳华 杨义先 《通信学报》 EI CSCD 北大核心 2019年第12期124-137,共14页
针对机器学习算法在应用中存在的问题,构建基于智能启发算法的机器学习模型优化体系。首先,介绍已有智能启发算法类型及其建模过程。然后,从智能启发算法在机器学习算法中的应用,包括神经网络等参数结构优化、特征优化、集成约简、原型... 针对机器学习算法在应用中存在的问题,构建基于智能启发算法的机器学习模型优化体系。首先,介绍已有智能启发算法类型及其建模过程。然后,从智能启发算法在机器学习算法中的应用,包括神经网络等参数结构优化、特征优化、集成约简、原型优化、加权投票集成和核函数学习等方面说明智能启发算法的优势。最后,结合实际需求展望智能启发算法及在机器学习领域的发展方向。 展开更多
关键词 参数结构优化 特征优化 集成约简 原型优化 加权投票集成 核函数学习
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部