期刊文献+
共找到39篇文章
< 1 2 >
每页显示 20 50 100
基于多尺度特征融合的轻量级火灾检测算法 被引量:3
1
作者 杨国为 刘璇 +1 位作者 郜敏 许迪 《计算机工程与应用》 CSCD 北大核心 2024年第23期229-237,共9页
针对传统火灾检测算法存在的检测精度不足及速度瓶颈,特别是对于小规模初发火情与大规模迅速蔓延火灾的识别难题,研究提出一种基于多尺度特征融合的轻量级火灾检测算法,设计了EDBAN模块以替代YOLOv8中的C2f模块,提升模型的泛化能力和适... 针对传统火灾检测算法存在的检测精度不足及速度瓶颈,特别是对于小规模初发火情与大规模迅速蔓延火灾的识别难题,研究提出一种基于多尺度特征融合的轻量级火灾检测算法,设计了EDBAN模块以替代YOLOv8中的C2f模块,提升模型的泛化能力和适应性,尤其是在处理多尺度火灾场景时的精准度。改进原有的BiFPN结构适配YOLOv8模型结构,并设计Weighted Blend模块对各层特征进行加权融合,增强特征的表征能力,降低漏检风险。进一步提出LOTT检测模块,以替代传统的YOLOv8检测,通过一系列组卷积和尺度调整操作,实现了在轻量化的同时保持了检测性能的准确性和稳定性。通过在场景丰富的火灾数据集上进行实验,结果表明,改进的YOLOv8算法在基准模型的基础上参数量减少了58.3%、计算量减少了34.5%,同时mAP提升了2.6个百分点,基本满足火灾实时检测的需求。 展开更多
关键词 YOLOv8 轻量化 火灾检测 目标检测 加权双向特征金字塔(bifpn)
在线阅读 下载PDF
基于坐标注意力和加权双向特征金字塔网络的舰载机阻拦着舰拉制状态精准识别
2
作者 李哲 杨杰 +4 位作者 张椅 王华 李亚飞 王可 徐明亮 《中国舰船研究》 2025年第4期124-133,共10页
[目的]舰载机着舰安全的关键在于尾钩与阻拦索成功挂索,而现有研究中,借助智能化手段辅助着舰指挥官(LSO)识别阻拦着舰状态的工作较少。为此,提出一种融合坐标注意力和加权双向特征金字塔网络的阻拦着舰拉制状态识别模型。[方法]先使用... [目的]舰载机着舰安全的关键在于尾钩与阻拦索成功挂索,而现有研究中,借助智能化手段辅助着舰指挥官(LSO)识别阻拦着舰状态的工作较少。为此,提出一种融合坐标注意力和加权双向特征金字塔网络的阻拦着舰拉制状态识别模型。[方法]先使用坐标注意力机制(CA)从空间和通道两个维度增强模型捕捉特征的能力;再通过加权双向特征金字塔网络(BiFPN)纳入可学习的权值学习不同输入特征的重要性,实现双向多尺度特征融合;然后采用C2F模块轻量化模型架构,减少参数和计算量;最后通过仿真实验将所提模型与5种基线模型进行对比。[结果]结果表明,在舰载机尾钩和阻拦着舰拉制状态的检测上,该模型综合性能均优于基线模型。[结论]该模型有助于提高尾钩及阻拦索的啮合状态检测的准确率和鲁棒性,对提高舰载机着舰作业的效率、预防潜在的人员伤害和装备损失具有重要意义。 展开更多
关键词 舰载机 阻拦装置 状态识别 双向特征金字塔网络(bifpn) 航空母舰
在线阅读 下载PDF
一种基于元学习的改进YOLO钢管表面缺陷小样本检测模型 被引量:2
3
作者 李凌波 田彦 +1 位作者 江旭东 董宝力 《机电工程》 北大核心 2025年第5期985-993,共9页
针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取... 针对产品表面缺陷样本数稀缺时的深度学习缺陷检测效果不佳问题,提出了一种基于元学习策略的改进YOLO-SBN模型,用于小样本缺陷检测。首先,为了提高提取全局特征信息的能力,采用了Swin Transformer作为骨干网络模型,引入注意力机制提取了特征图的判别能力;然后,为了提高特征融合能力并降低计算复杂度,通过加权双向特征金字塔网络(BiFPN)结构优化了特征提取器的颈部网络,平衡了YOLO-SBN模型的有效性和效率;最后,采用归一化注意力模块(NAM)优化权重调整了模块,增强了浅层缺陷特征的模型表达,并基于这些增强的特征进行了检测;使用金属表面热轧缺陷公开数据集NEU-DET验证了YOLO-SBN模型的算法性能。研究结果表明:对于小样本缺陷检测,YOLO-SBN模型在平均准确率(mAP)方面提高了4.1%;在新类缺陷样本规模数量为50的小样本情况下,改进后的检测模型对新类数据适应性最强。由此可见,该YOLO-SBN模型在提高检测精度和提升模型泛化能力方面具有一定优势。 展开更多
关键词 小样本目标检测 表面缺陷 元学习 特征网络 归一化注意力模块 平均准确率 双向特征金字塔网络(bifpn)
在线阅读 下载PDF
基于改进YOLOX的隧道火灾检测算法
4
作者 马庆禄 邱高建 白锋 《中国安全科学学报》 北大核心 2025年第4期28-34,共7页
针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字... 针对隧道初期火灾检测中存在的复杂环境干扰和低识别率问题,提出一种基于改进YOLOX算法的检测方法YOLOX-T。该方法在YOLOX中引入归一化注意力模块(NAM)机制来抑制环境噪声和干扰,提高系统的鲁棒性及识别的精确性;引入加权双向特征金字塔网络(BiFPN)增强特征提取和融合能力,优化α-交并比(IoU)损失函数,以提高对轮廓特征不明显的隧道初期烟雾火焰的检测精度;在现有公开数据集不足的情况下,通过网络采集、模拟试验和扩充现有数据集,构建隧道火灾数据集,在包含真实场景和模拟场景的自建隧道火灾数据集上进行验证。结果表明:相比于原始YOLOX模型,改进后的算法均值平均精度(mAP@0.5)提高1.89%,mAP@0.5~0.95提高0.88%,精确率提高4.57%,召回率提高5.45%,改进后的算法能够实现更优的检测性能。 展开更多
关键词 隧道火灾 YOLOX 火灾检测 归一化注意力模块(NAM) 加权双向特征金字塔网络(bifpn)
在线阅读 下载PDF
基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别
5
作者 毛清华 苏毅楠 +3 位作者 贺高峰 翟姣 王荣泉 尚新芒 《工矿自动化》 北大核心 2025年第1期11-20,103,共11页
针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换... 针对煤矿带式输送机场景存在尘雾干扰严重、背景环境复杂、人员尺度多变且易遮挡等因素导致人员入侵危险区域识别准确率不高等问题,提出一种基于改进YOLOv8模型的井下人员入侵带式输送机危险区域智能识别系统。改进YOLOv8模型通过替换主干网络C2f模块为C2fER模块,加强模型的细节特征提取能力,提升模型对小目标人员的识别性能;通过在颈部网络引入特征强化加权双向特征金字塔网络(FE-BiFPN)结构,提高模型的特征融合能力,从而提升模型对多尺度人员目标的识别效果;通过引入分离增强注意力模块(SEAM)增强模型在复杂背景下对局部特征的关注度,提升模型对遮挡目标人员的识别能力;通过引入WIoU损失函数增强训练效果,提升模型识别准确率。消融实验结果表明:改进YOLOv8模型的准确率较基线模型YOLOv8s提升2.3%,mAP@0.5提升3.4%,识别速度为104帧/s。人员识别实验结果表明:与YOLOv10m,YOLOv8s-CA、YOLOv8s-SPDConv和YOLO8n模型相比,改进YOLOv8模型对小目标、多尺度目标、遮挡目标的识别效果均更佳,识别准确率为90.2%,mAP@0.5为87.2%。人员入侵危险区域实验结果表明:井下人员入侵带式输送机危险区域智能识别系统判别人员入侵危险区域的平均准确率为93.25%,满足识别需求。 展开更多
关键词 煤矿带式输送机 人员入侵危险区域 YOLOv8模型 遮挡目标检测 小目标检测 多尺度融合 C2fER模块 特征强化加权双向特征金字塔网络结构
在线阅读 下载PDF
改进YOLOv8s-Pose多人姿态估计轻量化模型研究 被引量:1
6
作者 傅裕 高树辉 《计算机科学与探索》 北大核心 2025年第3期682-692,共11页
针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并... 针对现有人体姿态估计模型计算量大、检测速度慢等问题,提出了一种基于YOLOv8s-Pose模型的轻量化改进算法。在backbone中引入轻量化模块C2f-GhostNetBottleNeckV2替换原先C2f,减少参数量,提高模型速度。引入Non_Local注意力机制捕捉并传递人体关键点位置,直接融合全面的信息,为后续的层级提供更为丰富和深入的语义信息,提升整体的信息处理深度和广度,强化特征提取的效能,减少模型轻量化后精度降低问题,再将neck层引入加权双向特征金字塔网络,通过双向融合的理念,对自顶向下和自底向上的信息流动路径进行了重新规划,确保在处理不同尺度的特征信息时达到良好的平衡,给网络增加一个小目标检测头,减少对小目标的漏检情况,将CIOU损失函数更换为Focal-EIOU损失函数,以增强对复杂场景和多目标场景下的鲁棒性。实验结果表明,改进后的实验模型参数量降低了9.3%,在COCO2017人体关键点数据集上,与原模型相比mAP@0.50提升了0.4个百分点,mAP@0.50:0.95提升了0.6个百分点。可见,所提出的轻量化改进算法在减少模型参数量的同时,提升了人体姿态估计的算法精度,尤其对小目标检测有显著改善,为实现实时准确的姿态估计提供了有效手段。 展开更多
关键词 姿态估计 YOLOv8s-Pose GhostNetV2网络 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
YOLO-BFEPS:一种高效注意力增强的跨尺度YOLOv10火灾检测模型
7
作者 高均益 张伟 李泽麟 《计算机科学》 北大核心 2025年第S1期412-420,共9页
为解决传统火灾检测模型在处理复杂场景时,特征提取不充分和模型复杂度过高导致预警延迟及识别精度下降的问题,提出一种可部署到终端设备上的基于改进YOLOv10的新型火灾检测模型YOLO-BFEPS(YOLO Bi-directional Fusion with Enhanced Pa... 为解决传统火灾检测模型在处理复杂场景时,特征提取不充分和模型复杂度过高导致预警延迟及识别精度下降的问题,提出一种可部署到终端设备上的基于改进YOLOv10的新型火灾检测模型YOLO-BFEPS(YOLO Bi-directional Fusion with Enhanced Partial Self-Attention),实现了同时对烟雾与火灾的快速准确检测。首先,改进PSA模块,加强空间语义特征提取,解决通道降维建模跨通道关系时带来的信息丢失与计算复杂度增加的问题,提高检测精度,并将改进后的模块记为E-PSA(Enhanced Partial Self-Attention);其次,基于BiFPN提出特征层双向跨连接的思想进行尺度融合,重新设计了YOLOv10的颈部结构,并创新性地增加来自低特征层信息的融合,在保持准确度的同时大大减少了模型参数以及计算复杂度;引入Faster Block结构替换C2f模块的Bottleneck结构,实现模型的轻量化设计,并将其称为C2f-Faster。最后,通过在多个数据集上进行实验验证了所提模型的有效性,其在参数量减少35.5%、计算复杂度降低17.6%的基础上,将检测精度(Precision)和mAP@0.5分别提升了5.9%和1.4%。 展开更多
关键词 高效注意力 多尺度特征 加权双向特征金字塔 火灾检测 YOLOv10 轻量化 计算机视觉 深度学习
在线阅读 下载PDF
基于改进YOLOv5的玉米植株检测与识别研究
8
作者 崔岩 庄卫东 +1 位作者 秦韬 王楠 《中国农机化学报》 北大核心 2025年第6期136-141,共6页
为解决机械除草伤苗的问题,提出一种改进YOLOv5的玉米植株检测方法。建立复杂田间环境下的玉米植株数据集,在原有模型的基础上在Backbone和Head层增加坐标注意力(CA)机制,通过动态加权的方式提升对于玉米植株位置信息的关注度,强化位置... 为解决机械除草伤苗的问题,提出一种改进YOLOv5的玉米植株检测方法。建立复杂田间环境下的玉米植株数据集,在原有模型的基础上在Backbone和Head层增加坐标注意力(CA)机制,通过动态加权的方式提升对于玉米植株位置信息的关注度,强化位置信息,提升检测准确度,在Neck层采用加权双向特征金字塔网络(BiFPN),加强特征融合,提高检测速度和检测精确度。试验结果表明,与原始模型相比,所改进方法的平均精度均值mAP@0.5、mAP@0.5:0.95分别提升4.31、3.66个百分点,检测速度和模型大小分别为46.77帧/s和15.56 M,与SSD、YOLOv5、Fast R—CNN和YOLOv7相比也有一定的优势。改进模型能有效实现玉米植株的检测,实时性好,内存占用量小,可为智能除草机器人的护苗工作提供借鉴。 展开更多
关键词 玉米植株检测 YOLOv5模型 加权双向特征金字塔 坐标注意力机制
在线阅读 下载PDF
基于YOLOv5改进算法的屏蔽门夹人检测系统
9
作者 陈修忻 《城市轨道交通研究》 北大核心 2025年第S1期128-132,共5页
[目的]旨在通过目标检测方法,识别并减少车门夹人事件对城市轨道交通运营的影响,以提升车站的运营效率与安全性。基于YOLOv5改进算法设计屏蔽门夹人检测系统。[方法]基于现场收集含人不同姿态、角度图片共计5384张,将其按8∶2分为训练... [目的]旨在通过目标检测方法,识别并减少车门夹人事件对城市轨道交通运营的影响,以提升车站的运营效率与安全性。基于YOLOv5改进算法设计屏蔽门夹人检测系统。[方法]基于现场收集含人不同姿态、角度图片共计5384张,将其按8∶2分为训练集和测试集;对比YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l模型训练效果,选取YOLOv5m为基准模型并进行改进;在YOLOv5m模型的基础上引入自注意力机制CoTNet网络,并将Neck网络中的FPN(特征金字塔网络)+PAN(路径聚合网络)结构优化为BiFPN(加权双向特征金字塔网络)结构。[结果及结论]改进后的YOLOv5m算法比原算法在测试精度、召回率、平均精度上都有所提高。同时该系统可以实现对单张图片、单个视频、摄像头、视频流以及整个文件夹图片进行目标检测,并在识别到目标物后自动启动报警机制。 展开更多
关键词 城市轨道交通 屏蔽门 夹人检测 YOLOv5算法 CoTNet网络 加权双向特征金字塔
在线阅读 下载PDF
基于改进YOLOv7-tiny的绝缘子缺陷检测网络
10
作者 韩兴宇 陈为真 《现代电子技术》 北大核心 2025年第16期105-112,共8页
现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特... 现有的检测方法在复杂背景的输电线路图像中识别绝缘子微小缺陷时,得到的图像存在背景环境复杂、缺陷尺寸小等问题。为保证输电线路的安全运行,提出一种基于YOLOv7-tiny的绝缘子缺陷检测网络(IDD-Net)。首先,引入基于注意力的尺度内特征交互(AIFI)来处理高维特征,从而降低计算量;其次,使用双向加权路径特征金字塔网络(BiFPN)进行特征融合,并对下采样模块进行改进,增强网络的感知能力;最后,使用Focal-DIoU损失函数提高锚框质量。结果表明,与基线模型相比,IDD-Net的平均精度均值提高4.1%,精确率和召回率分别提高2.4%和6.5%,参数量和浮点运算量分别减少5.8%和2.3%,对于闪络缺陷的平均精度提高11.2%。由此说明所提方法参数量较小,性能更优异,鲁棒性更强。 展开更多
关键词 YOLOv7-tiny 绝缘子缺陷检测 基于注意力的尺度内特征交互 双向加权路径特征金字塔网络 MC下采样模块 轻量级网络
在线阅读 下载PDF
基于CBAM和BiFPN改进YoloV5的渔船目标检测 被引量:24
11
作者 张德春 李海涛 +1 位作者 李勋 张雷 《渔业现代化》 CSCD 2022年第3期71-80,共10页
在渔港高点监控渔船目标的场景下,对渔船检测经常丢失和检测错误等问题,提出了一种基于改进YoloV5的渔船目标检测模型。首先通过Kmeans++算法对锚框重新聚类,选择适合渔船数据集的锚框尺寸;然后在YoloV5的骨干网络中融入卷积注意力模块(... 在渔港高点监控渔船目标的场景下,对渔船检测经常丢失和检测错误等问题,提出了一种基于改进YoloV5的渔船目标检测模型。首先通过Kmeans++算法对锚框重新聚类,选择适合渔船数据集的锚框尺寸;然后在YoloV5的骨干网络中融入卷积注意力模块(CBAM)注意力机制获取更多细节特征;再采用加权双向特征金字塔网络(BiFPN)代替原先的特征金字塔网络(FPN)+像素聚合网络(PAN)结构,快速进行多尺度特征融合;最后在检测尺度上去掉大目标的检测尺度,增加更小目标的检测尺度,改用新的三个检测尺度,提高了模型对小目标渔船的检测精度。结果显示:对比原YoloV5算法,改进后的算法精确度、召回率和平均精度均值均有所提升,分别提升29.5%、0.5%和4.5%,每秒检测帧数达到90.6,对渔船目标检测效果有大幅度改善。研究表明,改进后的YoloV5算法满足休渔期管控期间对渔船目标检测的准确性和实时性要求。 展开更多
关键词 渔船检测 YoloV5算法 CBAM注意力机制 加权双向特征金字塔
在线阅读 下载PDF
基于改进Ghost-YOLOv5s-BiFPN算法检测梨树花序 被引量:17
12
作者 夏烨 雷哓晖 +5 位作者 祁雁楠 徐陶 袁全春 潘健 姜赛珂 吕晓兰 《智慧农业(中英文)》 2022年第3期108-119,共12页
疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚... 疏花是梨生产中的重要农艺措施,机械化智能疏花是当今高速发展的疏花方式,花朵与花苞的分类与检测是保证疏花机器正常工作的基本要求。本研究针对目前梨园智能化生产中出现的梨树花序检测与分类问题,提出了一种基于改进YOLOv5s的水平棚架梨园花序识别算法Ghost-YOLOv5s-BiFPN。通过对田间采集的梨树花苞与花朵图像进行标注与数据扩充后送入算法进行训练得到检测模型。Ghost-YOLOv5s-BiFPN运用加权双向特征金字塔网络(Bi-directional Feature Pyramid Network,BiFPN)替换原始的路径聚合网络(Path Aggregation Network,PAN)结构,对网络提取的不同尺寸目标特征进行有效的融合。同时运用Ghost模块替换传统卷积,在不降低准确度的同时减少模型参数量和提升设备运行效率。田间试验结果表明,改进的Ghost-YOLOv5s-BiFPN算法对梨树花序中花苞与花朵的检测精度分别为93.2%和89.4%,两种目标平均精度为91.3%,检测单张图像时间为29 ms,模型大小为7.62 M。相比于原始YOLOv5s算法,检测精度与召回度分别提升了4.2%和2.7%,检测时间和模型参数量分别降低了9 ms和46.6%。本研究提出的算法可对梨树花苞与花朵进行精确的识别和分类,为后续梨园智能化疏花的实现提供技术支持。 展开更多
关键词 梨树花序 智能识别 YOLOv5s 加权双向特征金字塔 轻量化模型
在线阅读 下载PDF
局部特征表征的6D位姿估计算法 被引量:1
13
作者 王晨露 陈立家 +5 位作者 李珅 范贤博俊 王敏 连晨轩 王赞 刘名果 《计算机应用研究》 CSCD 北大核心 2022年第12期3808-3814,共7页
为解决有纹理模型在遮挡条件下6D位姿估计精确度不高的问题,提出了一种局部特征表征的端到端6D位姿估计算法。首先为了得到准确的定位信息,提出了一个空间—坐标注意力机制(spatial and coordinate attention),通过在YOLOv5网络中加入... 为解决有纹理模型在遮挡条件下6D位姿估计精确度不高的问题,提出了一种局部特征表征的端到端6D位姿估计算法。首先为了得到准确的定位信息,提出了一个空间—坐标注意力机制(spatial and coordinate attention),通过在YOLOv5网络中加入空间—坐标注意力机制和加权双向特征金字塔网络(bidirectional feature pyramid network),YOLOv5-CBE算法的精确度(precision)、召回率(recall)、平均精度均值(mAP@0.5)分别提升了3.6%、2.8%、2.5%,局部特征中心点坐标误差最高提升了25%;然后用YOLOv5-CBE算法检测局部特征关键点,结合3D Harris关键点通过奇异值分解法(singular value decomposition)计算模型的6D位姿,最高遮挡70%的情况下仍然可以保证二维重投影精度(2D reprojection accuracy)和ADD度量精度(ADD accuracy)在95%以上,具有较强的鲁棒性。 展开更多
关键词 局部特征 6D位姿估计 YOLOv5检测网络 空间—坐标注意力机制 加权双向特征金字塔网络
在线阅读 下载PDF
融合CA-BiFPN的轻量化人体姿态估计算法 被引量:4
14
作者 皮骏 牛厚兴 高志云 《图学学报》 CSCD 北大核心 2023年第5期868-878,共11页
针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络... 针对现有的基于热力图的人体姿态估计网络模型复杂度高、算力需求大、不易部署至嵌入式平台和无人机移动平台等问题,提出了一种基于YOLOv5s6-Pose-ti-lite不使用热力图的轻量化人体姿态估计网络模型。通过将主干网络替换为GhostNet网络,旨在以更少的计算资源输出更有效的特征信息,提升网络检测速度,缓解网络冗余的问题;在主干网络中结合轻量化的坐标注意力CA模块,将图片的人体关键点位置信息聚集到通道上,增强特征提取能力;引入加权双向特征金字塔网络,提升模型的特征融合能力,平衡不同尺度的特征信息;最后将CIoU损失函数替换为Wise-Io U(WIo U),进一步提升模型对人体关键点回归的性能。结果表明,在COCO2017人体关键点数据集上,优化后的网络模型参数量降低26.2%,计算量降低30.0%,平均精确度提升1.7个百分点、平均召回率提升2.7个百分点,能够满足实时性的效果,验证了所提模型的可行性和有效性。 展开更多
关键词 人体姿态估计 轻量化 坐标注意力 加权双向特征金字塔网络 损失函数
在线阅读 下载PDF
基于注意力机制和跨尺度特征融合的摩托车头盔检测算法 被引量:3
15
作者 张鑫 周顺勇 +1 位作者 李思诚 曾雅兰 《电子测量技术》 北大核心 2023年第12期134-142,共9页
在道路交通摩托车事故中,未佩戴头盔是导致骑乘人员受到致命伤害的主要原因。针对目前头盔检测中由于黑色头发、帽子和头盔的颜色和形状相似存在误检和漏检问题,提出了一种具有三重注意力机制和双向跨尺度特征融合的摩托车头盔检测算法... 在道路交通摩托车事故中,未佩戴头盔是导致骑乘人员受到致命伤害的主要原因。针对目前头盔检测中由于黑色头发、帽子和头盔的颜色和形状相似存在误检和漏检问题,提出了一种具有三重注意力机制和双向跨尺度特征融合的摩托车头盔检测算法。首先,在YOLOV5s的主干网络中引入三重注意力机制,提取了不同维度之间的语义依赖,消除了通道和权重的间接对应关系,通过关注相似样本的差异从而提升检测精度。其次,采用EIOU边框损失函数优化对遮挡和重叠目标的检测效果。最后,在特征金字塔中采用加权双向特征金字塔网络结构,实现高效的双向跨尺度连接和加权特征融合,增强了网络特征提取能力。实验结果表明,改进算法实现了98.7%的mAP@0.5、94.0%的mAP@0.5:0.95,与原算法相比,改进算法的mAP@0.5提升了3.9%以及mAP@0.5:0.95提升了7.6%,具有更高的精度和更强的泛化能力。 展开更多
关键词 头盔检测 YOLOV5s 三重注意力机制 EIOU 加权双向特征金字塔
在线阅读 下载PDF
基于改进Faster R-CNN的零食包装盒表面缺陷检测 被引量:1
16
作者 巩雪 孙雪刚 +2 位作者 褚洋洋 崔功卓 李欣妍 《包装工程》 CAS 北大核心 2024年第23期232-240,共9页
目的针对现有食品包装盒表面缺陷检测方法存在的复杂背景下小目标缺陷检测难、漏检率高、检测精度低等问题,选择生活中常见的绿豆糕零食包装盒作为检测对象,提出一种基于改进Faster R-CNN的绿豆糕包装盒表面缺陷检测方法。方法以Faster ... 目的针对现有食品包装盒表面缺陷检测方法存在的复杂背景下小目标缺陷检测难、漏检率高、检测精度低等问题,选择生活中常见的绿豆糕零食包装盒作为检测对象,提出一种基于改进Faster R-CNN的绿豆糕包装盒表面缺陷检测方法。方法以Faster R-CNN算法架构为基础,以Swin Transformer V2-T为特征提取主干,初步提高算法对包装盒缺陷特征的提取能力;结合加权双向特征金字塔网络(Bidirectional Feature Pyramid Network,BiFPN)自适应调节每个尺度特征图的权重并对不同尺寸的特征进行多尺度融合,以提高识别的准确率;通过ROIAlign结合ECA注意力机制替换ROIPooling,去除2次量化误差并进一步优化算法对包装盒缺陷的检测能力。结果本检测方法可准确提取目标缺陷,绿豆糕包装盒表面的4种缺陷的检测平均精确率(Average Precision,AP)较改进前分别提高19.66、12.96、14.56、18.86百分点,同时平均精确率均值(mean Average Precision,mAP)在IoU为0.5上较改进前提高了15.76百分点。结论改进后的模型为Faster R-CNN在食品包装盒智能化生产上的应用了提供有益的参考和经验。 展开更多
关键词 零食包装盒 缺陷检测 Faster R-CNN 加权双向特征金字塔网络(bifpn) Swin TransformerV2
在线阅读 下载PDF
基于改进YOLOv5s的田间移动障碍物检测 被引量:4
17
作者 侯艳林 艾尔肯·亥木都拉 李贺南 《现代电子技术》 北大核心 2024年第6期171-178,共8页
为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和... 为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和计算复杂度,提高推理速度,将YOLOv5s网络模型中的卷积模块和C3模块替换为Ghost卷积和C3Ghost模块;第二,为了弥补模型参数量减少所造成的精度下降的损失,提升对目标的检测能力,在主干网络输出的特征层中引入CBAM注意力机制;第三,采用BiFPN特征金字塔结构,实现多尺度特征加权融合。实验结果表明,YOLOv5s模型的参数量为7.02×106,计算复杂度为15.8GB,平均检测精度为94%,生成权重文件大小为13.7MB,单幅图像的检测速度为71.43 f/s;改进后的模型参数量为4.04×106,下降了42.45%,计算复杂度缩减为8.5 GB,平均检测精度达到了93.2%,仅仅下降了0.8%,权重文件大小为8.1 MB,单幅图像的检测速度为77.52 f/s。以上数据证明,改进后的模型能够满足对田间移动型障碍物的实时检测,且更加易于部署到移动端设备。 展开更多
关键词 移动型障碍物 YOLOv5s 无人农机 目标检测 CBAM注意力机制 双向特征金字塔网络(bifpn)
在线阅读 下载PDF
一种改进YOLOX_S的火焰烟雾检测算法 被引量:7
18
作者 谢康康 朱文忠 +1 位作者 肖顺兴 谢林森 《科学技术与工程》 北大核心 2024年第8期3298-3307,共10页
针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对... 针对目前在火灾预警方面还存在火焰烟雾检测效果差、误报率高等问题,在YOLOX框架下提出改进YOLOX_S目标检测算法。首先在数据集建立方面,采用的数据集包括Bilkent University公开的数据集和部分自建数据集,共计9621张图片。并且通过对数据集采用Mosaic数据增强的方式,增加数据的多样性。其次对backbone部分采用swin-T骨干网络来代替原来的CSPDarkNet骨干网络,能够更好的捕捉不同尺度下的特征,有效地提升了目标检测的精度。然后对网络模型引入加权双向特征金字塔网络(bidirectional feature pyramid network,BiFPN)特征融合网络,提高检测的效率和网络模型的适应性,在复杂背景下同样可以保持较高的检测精度。最后引入CA注意力机制来加强此算法的特征提取能力。经过对比实验表明,改进后的YOLOX_S的火焰烟雾检测算法具有较高准确性,其mAP@0.5(预测框与真实框重合程度的阈值为0.5时的平均检测精度)达到81.5%,相比原网络提高了5.3%。改进后的YOLOX_S网络模型在火焰烟雾检测方面具有更高准确性和更低的误报率。 展开更多
关键词 YOLOX swin transformer 加权双向特征金字塔网络(bifpn) 火焰烟雾检测 注意力机制
在线阅读 下载PDF
面向带钢表面小目标缺陷检测的改进YOLOv7算法 被引量:6
19
作者 樊嵘 马小陆 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第3期303-308,316,共7页
带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可... 带钢表面小目标缺陷检测是工业质检领域的研究热点。针对热轧带钢表面缺陷检测任务中小目标缺陷易产生漏检的问题,文章提出一种改进的YOLOv7算法。在骨干网络中融入通道空间注意力模块(convolutional block attention module,CBAM)和可重参数化卷积模块,以提升小目标特征的提取效率;采用改进的双向特征金字塔网络(bi-directional feature pyramid network,BiFPN)颈部网络替换原有的路径聚合网络(path aggregation network,PANet)颈部网络,实现对小目标缺陷特征的高效提纯;采用解耦检测头进行检测结果输出,使网络在训练时进一步收敛至更高精度。实验结果表明,改进后的YOLOv7算法在小目标带钢缺陷检测场景下检测精度领先YOLOv7算法4.3 AP50精度,领先YOLOv6算法5.0 AP50精度,领先YOLOX算法4.8 AP50精度,说明该算法可以较好地应用于小目标带钢缺陷检测。 展开更多
关键词 机器视觉 缺陷检测 YOLOv7算法 双向特征金字塔网络(bifpn) 注意力机制
在线阅读 下载PDF
基于改进YOLOv5的织物缺陷检测 被引量:2
20
作者 陈淼 张胜利 季坚莞 《毛纺科技》 CAS 北大核心 2024年第1期99-106,共8页
鉴于织物表面纹理复杂导致织物缺陷检测准确率低以及小目标检测困难等问题,提出一种基于改进YOLOv5的织物缺陷检测算法。首先,在YOLOv5的骨干网络上,增加CBAM注意力机制,从而强化有用的特征信息弱化无用的特征信息;其次,将Neck层的路径... 鉴于织物表面纹理复杂导致织物缺陷检测准确率低以及小目标检测困难等问题,提出一种基于改进YOLOv5的织物缺陷检测算法。首先,在YOLOv5的骨干网络上,增加CBAM注意力机制,从而强化有用的特征信息弱化无用的特征信息;其次,将Neck层的路径聚合网络(PANet)用加权双向特征金字塔网络(Bi-FPN)替换,从而更好地平衡多尺度特征信息,提高小目标检测的特征能力。最后,通过改进损失函数,使用Focal EIOU Loss损失函数来代替CIOU Loss损失函数,不仅使得收敛速度更快,而且可以有效的解决难易样本不平衡问题。实践证明:改进后的训练模型平均精度均值mAP值为84.5%,比未改进增加了4.7%,可满足实际生产中的织物缺陷检测要求。 展开更多
关键词 YOLOv5 缺陷检测 注意力机制 加权双向特征金字塔 Focal EIOU Loss
在线阅读 下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部