期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进YOLOv8的城市车辆目标检测算法
1
作者 许德刚 王双臣 +1 位作者 尹柯栋 王再庆 《计算机工程》 北大核心 2025年第11期377-391,共15页
为了解决城市车辆目标检测算法中存在检测效果差、误检漏检率高、泛化能力弱的问题,提出一种改进YOLOv8的城市车辆目标检测算法。首先,在主干网络尾部融入高效多尺度注意力(EMA)机制,有助于模型更好地捕捉目标车辆的细节特征,结合160... 为了解决城市车辆目标检测算法中存在检测效果差、误检漏检率高、泛化能力弱的问题,提出一种改进YOLOv8的城市车辆目标检测算法。首先,在主干网络尾部融入高效多尺度注意力(EMA)机制,有助于模型更好地捕捉目标车辆的细节特征,结合160×160像素尺寸的小目标检测层来加强对小目标的检测能力,通过维度交互进一步聚合像素级特征,增强对目标车辆的挖掘能力。其次,为轻量化网络设计了一种多尺度轻量化卷积(MLConv)模块,并基于MLConv重构了C2f模块,提高模型的特征提取能力。最后,为抑制低质量图像产生的有害梯度,采用WIoU损失函数替代完全交并比(CIoU)损失函数,优化网络的边界框损失,提升模型的收敛速度和回归精度。在Streets车辆数据集上进行验证,结果表明,改进算法的mAP@0.5、mAP@0.5∶0.95和召回率相较于基准模型YOLOv8n分别提升了1.9、1.4和2.4百分点。在国内车辆数据集和VisDrone2019小目标数据集上进行验证,改进算法的各项性能指标都有不同程度的提升,充分证明了改进算法具有良好的泛化性和鲁棒性。与其他主流算法相比,改进算法同样表现出了更高的准确率和召回率,表明该算法对于城市车辆目标检测具有更好的性能。 展开更多
关键词 车辆目标检测 YOLOv8n模型 注意力机制 轻量化 加权交并比损失函数
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部