In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new ...In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.展开更多
This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mud...This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.展开更多
The models of stress corrosion, pressure solution and flee-face dissolution/precipitation were introduced. Taking a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the calculation ob...The models of stress corrosion, pressure solution and flee-face dissolution/precipitation were introduced. Taking a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the calculation objective, four cases were designed 1) the fracture aperture is a function of stress corrosion, pressure solution and free-face dissolution/precipitation; 2) the fracture aperture changes with stress corrosion and pressure solution; 3) the fracture aperture changes with pressure solution and free-face dissolution/precipitation; 4) the fracture aperture is only a function of pressure solution, and the matrix porosity is also a function of stress in these four cases. Then, the corresponding two-dimensional FEM analyses for the coupled thermo-hydro-mechanical processes were carried out. The results show that the effects of stress corrosion are more prominent than those of pressure solution and free-face dissolution/precipitation, and the fracture aperture and relevant permeability caused by the stress corrosion arc only about 1/5 and 1/1000 of the corresponding values created by the pressure solution and free-face dissolution/precipitation, respectively Under the action of temperature field from released heat, the negative pore and fracture pressures in the computation domain rise continuously, and are inversely proportional to the sealing of fracture aperture. The vector fields of flow velocity of fracture water in the cases with and without considering stress corrosion are obviously different. The differences between the magnitudes and distributions of stresses within the rock mass are very small in all cases.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and stra...To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.展开更多
In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pil...In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.展开更多
Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytica...Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.展开更多
基金Projects(50471102,50671089) supported by the National Natural Science Foundation of China
文摘In order to establish the quantitative relationship between equivalent strain and the performance index of the deformed material within the range of certain passes for equal channel angular processing (ECAP), a new approach to characterize the equivalent strain was proposed. The results show that there exists better accordance between mechanical property (such as hardness or strength) and equivalent strain after rolling and ECAP in a certain range of deformation amount, and Gauss equation can be satisfied among the equivalent strain and the mechanical properties for ECAP. Through regression analysis on the data of hardness and strength after the deformation, a more generalized expression of equivalent strain for ECAP is proposed as:ε=k0exp[-(k1M-k2)^2], where M is the strength or hardness of the material, k1 is the modified coefficient (k1∈ (0, 1)), ko and k2 are two parameters dependent on the critical strain and mechanical property that reaches saturation state for the material, respectively. In this expression the equivalent strain for ECAP is characterized novelly through the mechanical parameter relating to material property rather than the classical geometry equation.
基金Projects(51908069, 51908073, 51838001, 51878070) supported by the National Natural Science Foundation of ChinaProject(2019SK2171) supported by the Key Research and Development Program of Hunan Province, China+3 种基金Project(2019IC04) supported by the Double First-Class Scientific Research International Cooperation Expansion Project of Changsha University of Science & Technology,ChinaProject(kfj190605) supported by the Open Fund of Engineering Laboratory of Spatial Information Technology of Highway Geological Disaster Early Warning in Hunan Province (Changsha University of Science & Technology), ChinaProject(kq1905043) supported by the Training Program for Excellent Young Innovators of Changsha, ChinaProject(SJCX202017) supported by the Practical Innovation Program for Graduates of Changsha University of Science & Technology, China。
文摘This study aims to improve the mechanical behavior of disintegrated carbonaceous mudstone, which is used as road embankment filler in southwestern China. Triaxial tests were performed on disintegrated carbonaceous mudstone modified by fly ash, cement, and red clay. Then the stress-strain relationships and shear strength parameters were analyzed. The microstructure and mineral composition of the materials were identified via scanning electron microscopy and X-ray diffraction. The results show that the stress-strain relationships changed from strain-hardening to strain-softening when disintegrated carbonaceous mudstone was modified with cement. By contrast, the addition of fly ash and red clay did not change the type of stress-strain relationships. The order of these three additives is cement, red clay and fly ash according to their influences on the cohesion. Disintegrated carbonaceous mudstone without cement all showed bulging failures, and that modified with cement exhibited shear failures or bulging-shear failures. The soil particles of the improved soil were well bonded by cementitious substances, so the microstructure was denser and more stable, which highly enhanced the mechanical behavior of disintegrated carbonaceous mudstone. The findings could offer references for the use of carbonaceous mudstone in embankment engineering.
基金Project(2010CB732101) supported by the National Basic Research Program of ChinaProject(51079145) supported by the National Natural Science Foundation of ChinaProject(2009BAK53B03) supported by the National Key Technology R&D Program of China
文摘The models of stress corrosion, pressure solution and flee-face dissolution/precipitation were introduced. Taking a hypothetical nuclear waste repository in an unsaturated dual-porosity rock mass as the calculation objective, four cases were designed 1) the fracture aperture is a function of stress corrosion, pressure solution and free-face dissolution/precipitation; 2) the fracture aperture changes with stress corrosion and pressure solution; 3) the fracture aperture changes with pressure solution and free-face dissolution/precipitation; 4) the fracture aperture is only a function of pressure solution, and the matrix porosity is also a function of stress in these four cases. Then, the corresponding two-dimensional FEM analyses for the coupled thermo-hydro-mechanical processes were carried out. The results show that the effects of stress corrosion are more prominent than those of pressure solution and free-face dissolution/precipitation, and the fracture aperture and relevant permeability caused by the stress corrosion arc only about 1/5 and 1/1000 of the corresponding values created by the pressure solution and free-face dissolution/precipitation, respectively Under the action of temperature field from released heat, the negative pore and fracture pressures in the computation domain rise continuously, and are inversely proportional to the sealing of fracture aperture. The vector fields of flow velocity of fracture water in the cases with and without considering stress corrosion are obviously different. The differences between the magnitudes and distributions of stresses within the rock mass are very small in all cases.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.
基金Project(51304171)supported by the National Natural Science Foundation of ChinaProject(E2013203248)supported by Natural Science Foundation of Hebei Province of ChinaProject(NECSR-201209)supported by Open Foundation of the National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,China
文摘To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.
基金Project(51508279) supported by the National Natural Science Foundation of ChinaProject(KFJ170104) supported by the Open Fund of National Engineering Laboratory of Highway Maintenance Technology of Changsha University of Science & Technology, China+1 种基金Project(BK20150885) supported by the Jiangsu Provincial Natural Science Fund, ChinaProject(2019003) supported by the Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering of Hohai University, China。
文摘In piled and geosynthetic-reinforced(PGR) embankment, the arching behavior determines the overburden load on piles and subsoils. Placement of geosynthetic is effective in reducing the relative displacement between pile and subsoil. When the mobilized shear stress is less than the shear strength, partially developed arching will occur. Consequently, existing analytical methods, adopting the ultimate shear strength failure criterion, need to be improved. This study developed a simplified 2 D analytical method, which is based on the developing arching effect, to evaluate the load redistribution of the PGR embankment. Then, the influences of embankment height and internal friction angle, subsoil depth, ratio of pile cap width to pile clear spacing(RPC) and geosynthetic tensile stiffness on the critical height ratio, stress concentration ratio, soil arching ratio, geosynthetic tension and axial strain were investigated. This study suggests that a RPC of 1:1.0 and a one-way of single-layer geosynthetic tensile stiffness of 2000 kN/m should be considered as the sensitivity thresholds for the PGR embankment.
文摘Mar-M247 is a nickel-based alloy which is well known as difficult-to-machine material due to its characteristics of high strength, poor thermal diffusion and work hardening. Calculation of shear stress by an analytical force model to indicate the effect of coating material, cutting speed, feed rate on tool life and surface roughness was conducted experimentally. Cutting tests were performed using round inserts, with cutting speeds ranging from 50 to 300 rn/min, and feed rates from 0.1 to 0.4 mm/tooth, without using cooling liquids. The behavior of the TiN and TiCN layers using various cutting conditions was analyzed with orthogonal machining force model. Cutting results indicate that different coated tools, together with cutting variables, play a significant role in determining the machinability when milling Mar-M247.