期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
静息态功能连接特异性与机器学习的癫痫定侧
1
作者 宋子博 葛曼玲 +4 位作者 付晓璇 陈盛华 郭志彤 张其锐 张志强 《计算机应用与软件》 北大核心 2024年第8期67-73,共7页
为探索癫痫发作侧的脑功能影像标记,提出静息态功能磁共振的功能连接特异性模型和有监督机器学习联合方案。选取20名结构影像提示发作侧的颞叶癫痫患者(均分左、右两组)和142名健康人;以健康人为参照,构建功能连接特异性模型,为每位患... 为探索癫痫发作侧的脑功能影像标记,提出静息态功能磁共振的功能连接特异性模型和有监督机器学习联合方案。选取20名结构影像提示发作侧的颞叶癫痫患者(均分左、右两组)和142名健康人;以健康人为参照,构建功能连接特异性模型,为每位患者每个脑区功能连接打分;统计分析左右组间打分值差异显著性,获得对发作侧敏感的标志性脑区;以其打分值为特征向量输入到概率神经网络实现定侧并使用交叉验证。结果显示,对发作侧敏感的功能影像学标记在杏仁核、中央旁小叶等6个脑区,分类准确率达90.0%,高于目前机器学习辅助癫痫研究水准。 展开更多
关键词 静息态功能磁共振 功能连接特异性 概率神经网络 颞叶癫痫 发作侧
在线阅读 下载PDF
基于个体特异性功能连接的阿尔茨海默病早期识别研究 被引量:3
2
作者 王雪彤 董晓熹 李淑宇 《磁共振成像》 CAS CSCD 北大核心 2022年第4期56-61,68,共7页
目的基于静息态功能磁共振成像(resting state functional magnetic resonance imaging,rs-f MRI)探索个体特异性功能连接对阿尔茨海默病(Alzheimer’s disease,AD)及轻度认知障碍(mild cognitive impairment,MCI)患者、稳定型轻度认知... 目的基于静息态功能磁共振成像(resting state functional magnetic resonance imaging,rs-f MRI)探索个体特异性功能连接对阿尔茨海默病(Alzheimer’s disease,AD)及轻度认知障碍(mild cognitive impairment,MCI)患者、稳定型轻度认知障碍(stable mild cognitive impairment,sMCI)及进展型轻度认知障碍(progress mild cognitive impairment,pMCI)患者分类的影响,提取有助于AD及MCI诊断的潜在神经影像学标志物。材料与方法使用阿尔茨海默病神经影像学计划(Alzheimer’s Disease Neuroimaging Initiative,ADNI)数据集,包含47名正常对照组(normal controls,NC),66名s MCI,24名p MCI和29名AD患者。本文使用基于多任务学习的稀疏凸松弛交互结构优化(multi-task learning-based sparse convex alternating structure optimization,MTL-s CASO)方法提取个体特异性功能连接,并通过最小绝对收缩和选择算子(least absolute shrinkage and selection operator,LASSO)进行特征选择,最后利用支持向量机(support vector machine,SVM)分类器完成AD/MCI/NC的三分类及s MCI/p MCI的二分类任务。此外,采用双样本t检验来计算分类过程中最具辨识力的功能连接的组间差异(P<0.05)。结果相比于通过传统皮尔森相关构建的功能连接的分类结果(73.49%),基于个体特异性功能连接对AD/MCI/NC的三分类准确度达到了85.54%。此外,使用个体特异性功能连接对sMCI/pMC的分类性能(86.67%)要优于使用皮尔森相关得到的功能连接的分类性能(75.56%)。在分类过程中最具辨识力的功能连接,其连接强度在组间的差异有统计学意义。结论采用蕴含更多个体特性的个体特异性连接可提高对AD及MCI识别准确度,个体特异性功能连接有望作为AD及MCI诊断的潜在神经影像学标志物。 展开更多
关键词 静息态功能磁共振成像 阿尔茨海默病 轻度认知障碍 多任务学习 个体异性功能连接 早期诊断 影像学标志物
在线阅读 下载PDF
脑功能连接模型在机器学习中分类鲁棒性研究——以静息态功能磁共振定位癫痫发作侧为例 被引量:4
3
作者 杨泽坤 葛曼玲 +4 位作者 付晓璇 陈盛华 张夫一 郭志彤 张志强 《中国生物医学工程学报》 CAS CSCD 北大核心 2021年第5期521-530,共10页
机器学习能促进静息态功能磁共振成像(rf MRI)在癫痫中应用,尽管Pearson相关性的传统功能连接(FC)模型作为成像算法有较多报道,但其分类鲁棒性却少有研究。提出特异于健康人的癫痫患者FC指数模型,与FC在有监督机器学习分类敏感性和稳定... 机器学习能促进静息态功能磁共振成像(rf MRI)在癫痫中应用,尽管Pearson相关性的传统功能连接(FC)模型作为成像算法有较多报道,但其分类鲁棒性却少有研究。提出特异于健康人的癫痫患者FC指数模型,与FC在有监督机器学习分类敏感性和稳定性上进行比较,以期为提取癫痫患者功能影像学标记提供新算法。搜集20名结构像标记为海马阳性的内侧颞叶癫痫患者(各10名纳入左侧、右侧2组)和142名来自连接组学且与患者相同年龄段健康人的rf MRI数据;以健康人群为参照,构建个体患者FC特异性指数模型,为每个脑区功能打分;通过ROC敏感性分析曲线和曲线下面积(AUC)提取指数模型,对发作侧敏感脑区获得功能影像标记;以其指数作为特征向量,分别输入至概率神经网络和支持向量机,对患者发作侧分类;10次随机交叉验证分析稳定性,再分别对敏感脑区之间和患者之间的特征向量做线性相关性分析,以探求影响稳定性的内在原因。最后,用FC代替指数模型做同上处理,并比较两种功能连接模型的分类稳定性。结果显示,以FC为特征向量的AUC为0.76,而特异性指数的特征向量AUC为0.84,指数模型的分类敏感性高于FC。另外,FC的分类精度在25%~100%之间强烈波动,方差高达25.99%,且特征向量平均相关系数为0.67,相关性较强;而指数模型则在75%~100%之间较小波动,方差低至7.10%,且特征向量平均相关系数为0.28,相关性较小。在机器学习癫痫定侧中,静息态功能连接特异性指数模型表现出较强的分类鲁棒性,远优于传统模型,特征向量相关性较大可能是影响后者稳定性的主要原因。 展开更多
关键词 功能连接特异性 Pearson相关性 静息态功能磁共振成像 有监督机器学习 癫痫发作侧定位
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部