本研究基于FRANC2D(Fracture Analysis Code in 2Dimensions)二维断裂分析有限元软件,并结合大型有限元软件ABAQUS,对Cu/WCp双层及多层功能梯度材料的疲劳裂纹扩展进行数值模拟研究,控制疲劳裂纹沿不同梯度方向扩展,计算出裂纹扩展中的...本研究基于FRANC2D(Fracture Analysis Code in 2Dimensions)二维断裂分析有限元软件,并结合大型有限元软件ABAQUS,对Cu/WCp双层及多层功能梯度材料的疲劳裂纹扩展进行数值模拟研究,控制疲劳裂纹沿不同梯度方向扩展,计算出裂纹扩展中的应力强度因子幅(ΔK),绘制出疲劳裂纹扩展速率曲线,以及裂纹扩展速率和裂尖距界面距离l的关系曲线(da/dN-l),将模拟计算结果与试验结果进行对比分析。研究表明:结合FRANC2D和ABAQUS的数值模拟方法,在比较复杂的叠层功能梯度材料有限元模型建立中具有很大的优势,可以快速地计算功能梯度材料的应力强度因子值;发现材料梯度层间界面的存在以及材料梯度含量的变化,对功能梯度材料裂纹扩展的整个阶段都存在很大影响;梯度层的数量对功能梯度材料的疲劳裂纹扩展速率也有一定影响。展开更多
Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufactu...Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.展开更多
文摘本研究基于FRANC2D(Fracture Analysis Code in 2Dimensions)二维断裂分析有限元软件,并结合大型有限元软件ABAQUS,对Cu/WCp双层及多层功能梯度材料的疲劳裂纹扩展进行数值模拟研究,控制疲劳裂纹沿不同梯度方向扩展,计算出裂纹扩展中的应力强度因子幅(ΔK),绘制出疲劳裂纹扩展速率曲线,以及裂纹扩展速率和裂尖距界面距离l的关系曲线(da/dN-l),将模拟计算结果与试验结果进行对比分析。研究表明:结合FRANC2D和ABAQUS的数值模拟方法,在比较复杂的叠层功能梯度材料有限元模型建立中具有很大的优势,可以快速地计算功能梯度材料的应力强度因子值;发现材料梯度层间界面的存在以及材料梯度含量的变化,对功能梯度材料裂纹扩展的整个阶段都存在很大影响;梯度层的数量对功能梯度材料的疲劳裂纹扩展速率也有一定影响。
基金Project(2020B090922002)supported by Guangdong Provincial Key Field Research and Development Program,ChinaProjects(51875215,52005189)supported by the National Natural Science Foundation of ChinaProject(2019B1515120094)supported by Guangdong Provincial Basic and Applied Basic Research Fund,China。
文摘Functionally graded material(FGM)can tailor properties of components such as wear resistance,corrosion resistance,and functionality to enhance the overall performance.The selective laser melting(SLM)additive manufacturing highlights the capability in manufacturing FGMs with a high geometrical complexity and manufacture flexibility.In this work,the 316L/CuSn10/18Ni300/CoCr four-type materials FGMs were fabricated using SLM.The microstructure and properties of the FGMs were investigated to reveal the effects of SLM processing parameters on the defects.A large number of microcracks were found at the 316L/CuSn10 interface,which initiated from the fusion boundary of 316L region and extended along the building direction.The elastic modulus and nano-hardness in the 18Ni300/CoCr fusion zone decreased significantly,less than those in the 18Ni300 region or the CoCr region.The iron and copper elements were well diffused in the 316L/CuSn10 fusion zone,while elements in the CuSn10/18Ni300 and the 18Ni300/CoCr fusion zones showed significantly gradient transitions.Compared with other regions,the width of the CuSn10/18Ni300 interface and the CuSn10 region expand significantly.The mechanisms of materials fusion and crack generation at the 316L/CuSn10 interface were discussed.In addition,FGM structures without macro-crack were built by only altering the deposition subsequence of 316L and CuSn10,which provides a guide for the additive manufacturing of FGM structures.