随着智能驾驶汽车快速发展,预期功能安全(safety of the intended functionality,SOTIF)愈发凸显其重要性。自动变道控制系统作为自动驾驶系统的重要组成部分,在决策规划层面存在SOTIF不足的风险。基于ISO21448和系统过程理论(system-th...随着智能驾驶汽车快速发展,预期功能安全(safety of the intended functionality,SOTIF)愈发凸显其重要性。自动变道控制系统作为自动驾驶系统的重要组成部分,在决策规划层面存在SOTIF不足的风险。基于ISO21448和系统过程理论(system-theoretic process analysis,STPA),对车辆变道决策规划系统的预期功能安全进行分析,找到潜在的危害触发事件并得到相应的安全目标。针对安全目标进行算法改进,综合考虑车型、车速、路面状况等行驶因素,利用高斯过程回归和模糊综合评价的方法得出目标车辆加速度用以评估当前变道安全性。结合最小变道时间及变道终点确定最优变道轨迹,并在变道过程中实时更新周围车辆行驶状态,利用提出的安全系数判断本车当前的安全状态并采取不同的变道措施,以保证车辆安全变道或在紧急情况无法完成变道时可以安全返回。建立验证场景,对不同场景下功能改进前后系统的风险进行对比。结果表明:功能改进后系统的风险显著降低,变道过程中的安全水平明显提高。展开更多
本文给出CTCS-3级列控系统中组件控制行为的形式化定义,并针对控制行为的时序关系,提出控制行为时序逻辑。以此时序逻辑为基础,给出控制关系模型的形式化定义,使用控制关系模型对列控系统中的控制行为关系进行刻画。利用深度优先搜索的...本文给出CTCS-3级列控系统中组件控制行为的形式化定义,并针对控制行为的时序关系,提出控制行为时序逻辑。以此时序逻辑为基础,给出控制关系模型的形式化定义,使用控制关系模型对列控系统中的控制行为关系进行刻画。利用深度优先搜索的方式,对系统的控制关系模型进行分析,实现STPA(System-Theoretic Process Analysis)过程中不恰当控制行为的自动化辨识。以CTCS-3级列控系统的RBC交接场景为例,使用上述基于控制关系模型的STPA方法对列控系统的功能安全进行分析。分析过程表明利用形式化的控制关系模型扩展STPA的方法适用于CTCS-3级列控系统的功能安全分析。展开更多
文摘随着智能驾驶汽车快速发展,预期功能安全(safety of the intended functionality,SOTIF)愈发凸显其重要性。自动变道控制系统作为自动驾驶系统的重要组成部分,在决策规划层面存在SOTIF不足的风险。基于ISO21448和系统过程理论(system-theoretic process analysis,STPA),对车辆变道决策规划系统的预期功能安全进行分析,找到潜在的危害触发事件并得到相应的安全目标。针对安全目标进行算法改进,综合考虑车型、车速、路面状况等行驶因素,利用高斯过程回归和模糊综合评价的方法得出目标车辆加速度用以评估当前变道安全性。结合最小变道时间及变道终点确定最优变道轨迹,并在变道过程中实时更新周围车辆行驶状态,利用提出的安全系数判断本车当前的安全状态并采取不同的变道措施,以保证车辆安全变道或在紧急情况无法完成变道时可以安全返回。建立验证场景,对不同场景下功能改进前后系统的风险进行对比。结果表明:功能改进后系统的风险显著降低,变道过程中的安全水平明显提高。
文摘本文给出CTCS-3级列控系统中组件控制行为的形式化定义,并针对控制行为的时序关系,提出控制行为时序逻辑。以此时序逻辑为基础,给出控制关系模型的形式化定义,使用控制关系模型对列控系统中的控制行为关系进行刻画。利用深度优先搜索的方式,对系统的控制关系模型进行分析,实现STPA(System-Theoretic Process Analysis)过程中不恰当控制行为的自动化辨识。以CTCS-3级列控系统的RBC交接场景为例,使用上述基于控制关系模型的STPA方法对列控系统的功能安全进行分析。分析过程表明利用形式化的控制关系模型扩展STPA的方法适用于CTCS-3级列控系统的功能安全分析。