为了有效实现高谐波抑制并提高功率附加效率,提出了一种适用于4G-LTE无线通信系统的高效F类功率放大器。该功率放大器使用了低电压p-HEMT晶体管和小型微带抑制单元,能够在低射频输入功率下产生n次谐波抑制和较高的功率附加效率PAE(Power...为了有效实现高谐波抑制并提高功率附加效率,提出了一种适用于4G-LTE无线通信系统的高效F类功率放大器。该功率放大器使用了低电压p-HEMT晶体管和小型微带抑制单元,能够在低射频输入功率下产生n次谐波抑制和较高的功率附加效率PAE(Power Added Efficiency)。采用谐波平衡法对提出的功率放大器进行了仿真分析。测量结果显示,提出功率放大器的工作频率为1.8 GHz,带宽为100 MHz,平均PAE为76.9%,且具有2 V的极低漏极电压。射频输入功率范围分别为0~12 d Bm时,最大输出功率和增益分别为23.4 d Bm和17.5 d Bm。展开更多
文摘基于0.25μm GaAs PHEMT工艺设计了一款7~13 GHz微波单片高效率驱动放大器。芯片采用两级级联拓扑结构,在输入级引入共源并联负反馈结构拓宽工作带宽,同时为兼顾输出功率和效率,在输出级引入等效RC模型拟合输出管芯的最优阻抗。基于等效RC模型,通过采用电抗匹配方式降低输出宽带匹配网络的损耗来实现较高的输出功率和附加效率。实测与仿真曲线吻合度较好,实测结果显示:在7~13 GHz工作带宽范围内,输入驻波比小于1.5,输出驻波比小于1.8,线性增益大于13 d B,3 d B压缩点输出功率大于24 d Bm,功率附加效率大于35%,芯片面积为1.8 mm×0.8 mm。
文摘为了有效实现高谐波抑制并提高功率附加效率,提出了一种适用于4G-LTE无线通信系统的高效F类功率放大器。该功率放大器使用了低电压p-HEMT晶体管和小型微带抑制单元,能够在低射频输入功率下产生n次谐波抑制和较高的功率附加效率PAE(Power Added Efficiency)。采用谐波平衡法对提出的功率放大器进行了仿真分析。测量结果显示,提出功率放大器的工作频率为1.8 GHz,带宽为100 MHz,平均PAE为76.9%,且具有2 V的极低漏极电压。射频输入功率范围分别为0~12 d Bm时,最大输出功率和增益分别为23.4 d Bm和17.5 d Bm。