主要针对H桥级联型储能功率转换系统(Power Control System,PCS)电池荷电状态(State of Charge,SOC)的相内均衡控制策略进行理论分析和研究。设计容量等级和额定电压为10 k V/2 MW的储能功率转换系统,研究电池单元的相内SOC均衡控制策略...主要针对H桥级联型储能功率转换系统(Power Control System,PCS)电池荷电状态(State of Charge,SOC)的相内均衡控制策略进行理论分析和研究。设计容量等级和额定电压为10 k V/2 MW的储能功率转换系统,研究电池单元的相内SOC均衡控制策略,构建Matlab仿真模型,仿真验证H桥级联型储能PCS的SOC均衡控制策略。展开更多
The conventional structures in the Switched Reluctance machines are introduced, such as three-phase 12/8 structure Switched Reluctance machine, three-phase 6/4 structure Switched Reluctance machine, four-phase 16/12 s...The conventional structures in the Switched Reluctance machines are introduced, such as three-phase 12/8 structure Switched Reluctance machine, three-phase 6/4 structure Switched Reluctance machine, four-phase 16/12 structure Switched Reluctance machine, and four-phase 8/6 structure Switched Reluctance machine. Three-phase 12/8 structure Switched Reluctance machine is the best choice for the large power Switched Reluctance machine system in coal mines. The asymmetric bridge power converter main circuit and the bifilar winding power converter main circuit are also introduced. Three-phase asymmetric bridge power converter main circuit is the best choice for the large power Switched Reluctance machine system in coal mines. The magnetic paths of the designed large power motor are given with one phase excitation and double phases excitation. The phase current waveforms are also given.展开更多
文摘主要针对H桥级联型储能功率转换系统(Power Control System,PCS)电池荷电状态(State of Charge,SOC)的相内均衡控制策略进行理论分析和研究。设计容量等级和额定电压为10 k V/2 MW的储能功率转换系统,研究电池单元的相内SOC均衡控制策略,构建Matlab仿真模型,仿真验证H桥级联型储能PCS的SOC均衡控制策略。
基金Project 2008DFA61870 supported by the International S&T Cooperation Program of Chinathe Project [2008]221-12-1 supported by the Chinese-Bulgarian Scientific and Technological Cooperation Project
文摘The conventional structures in the Switched Reluctance machines are introduced, such as three-phase 12/8 structure Switched Reluctance machine, three-phase 6/4 structure Switched Reluctance machine, four-phase 16/12 structure Switched Reluctance machine, and four-phase 8/6 structure Switched Reluctance machine. Three-phase 12/8 structure Switched Reluctance machine is the best choice for the large power Switched Reluctance machine system in coal mines. The asymmetric bridge power converter main circuit and the bifilar winding power converter main circuit are also introduced. Three-phase asymmetric bridge power converter main circuit is the best choice for the large power Switched Reluctance machine system in coal mines. The magnetic paths of the designed large power motor are given with one phase excitation and double phases excitation. The phase current waveforms are also given.