期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
考虑日周期性影响的光伏功率爬坡事件非精确概率预测 被引量:12
1
作者 朱文立 张利 +2 位作者 杨明 王勃 赵元春 《电力系统自动化》 EI CSCD 北大核心 2019年第20期31-38,共8页
光伏功率爬坡事件的可靠预测对电力系统运行决策至关重要。针对现有光伏发电功率爬坡事件预测存在误报与漏报的问题,提出了一种考虑日周期性影响的光伏功率爬坡事件非精确概率预测方法。首先,定义了新的光伏爬坡特征量,以有效剔除光伏... 光伏功率爬坡事件的可靠预测对电力系统运行决策至关重要。针对现有光伏发电功率爬坡事件预测存在误报与漏报的问题,提出了一种考虑日周期性影响的光伏功率爬坡事件非精确概率预测方法。首先,定义了新的光伏爬坡特征量,以有效剔除光伏发电功率中的日趋势性变化。进而,为了避免光伏爬坡样本数据有限可能引发的预测误差,通过结构学习构建了最优信度网络,对光伏功率爬坡事件进行非精确概率预测;其中,信度网络节点关联的非精确条件概率由多状态随机变量的非精确狄利克雷模型统计得到。最后,根据给定气象条件,推理计算各爬坡状态发生的概率区间。基于某光伏电站数据的算例仿真验证了所述方法的有效性,表明所提方法可有效捕捉光伏发电功率变动中由气象条件引发的突变事件。 展开更多
关键词 光伏功率爬坡事件 日周期性 非精确概率 条件概率 信度网络
在线阅读 下载PDF
基于爬坡特征与改进PRAA的深远海风电功率短期预测研究
2
作者 黄冬梅 张佳慧 +2 位作者 时帅 宋巍 杜伟安 《电力科学与技术学报》 CAS CSCD 北大核心 2024年第3期187-198,共12页
深远海海域情况复杂,海面风速极易受海洋中尺度事件影响。所造成的异常数据点和Bump事件将导致爬坡检测准确率下降,影响深远海风电功率短期预测精度。因此,提出了一种同时考虑爬坡事件以及深远海气象因素的深远海风电功率短期预测方法... 深远海海域情况复杂,海面风速极易受海洋中尺度事件影响。所造成的异常数据点和Bump事件将导致爬坡检测准确率下降,影响深远海风电功率短期预测精度。因此,提出了一种同时考虑爬坡事件以及深远海气象因素的深远海风电功率短期预测方法。首先,设计基于状态标记和滑动窗口改进的参数和分辨率自适应算法(parameter and resolution adaptive algorithm,PRAA)实现爬坡事件检测并完成特征量提取;其次,分析深远海风速、风向及温度等多因素关联关系,扩充深远海气象因素特征样本维度,并通过主成分分析法(principal component analysis,PCA)深度挖掘潜在特征;最后,基于某海上风电场的实测数据,采用考虑爬坡和深远海气象因素的轻量梯度提升机(light gradient boosting machine,LightGBM)算法完成深远海风电功率的短期预测,仿真结果验证了所提方法的有效性。 展开更多
关键词 深远海风电 风电功率爬坡事件 PRAA 特征量 风电功率短期预测
在线阅读 下载PDF
考虑风电功率爬坡的功率预测—校正模型 被引量:20
3
作者 叶林 路朋 +4 位作者 滕景竹 翟丙旭 吴林林 蓝海波 仲悟之 《电力系统自动化》 EI CSCD 北大核心 2019年第6期49-58,共10页
随着大规模风电接入电力系统,风电功率爬坡事件对电网的安全稳定运行带来一定的影响。研究爬坡事件发生时的功率预测已越来越迫切。基于极限学习机理论,提出了一种考虑风电功率爬坡事件的超短期功率预测和校正模型。首先,利用最优旋转... 随着大规模风电接入电力系统,风电功率爬坡事件对电网的安全稳定运行带来一定的影响。研究爬坡事件发生时的功率预测已越来越迫切。基于极限学习机理论,提出了一种考虑风电功率爬坡事件的超短期功率预测和校正模型。首先,利用最优旋转门算法对当前爬坡事件进行识别,提取爬坡事件特征值,建立模糊C均值聚类模型以得到同类数据,在此基础上,采用极限学习机算法对上述数据进行训练、预测,通过元组向量时间扭曲法在历史风电功率预测爬坡事件库中寻找与当前风电功率预测结果相似的爬坡事件,得到功率预测历史相似爬坡事件。最后,利用功率预测历史匹配值与实际值之间的特征值误差,对风电功率预测结果进行修正。算例表明,所提方法可准确识别风电功率爬坡事件、有效提高风电功率超短期预测精度。 展开更多
关键词 风电功率爬坡事件 最优旋转门算法 极限学习机 风电功率预测
在线阅读 下载PDF
基于生成对抗网络的风电爬坡功率预测 被引量:6
4
作者 黄棋悦 严楠 钟旭佳 《太阳能学报》 EI CAS CSCD 北大核心 2023年第1期226-231,共6页
风电的波动性和随机性,尤其是功率爬坡事件严重威胁着电网运行的安全和稳定。功率爬坡是极端天气影响下产生的,属于小概率事件。其极低的发生概率导致历史爬坡样本数量严重不足,并制约了传统功率预测模型的预测精度。针对此类问题,提出... 风电的波动性和随机性,尤其是功率爬坡事件严重威胁着电网运行的安全和稳定。功率爬坡是极端天气影响下产生的,属于小概率事件。其极低的发生概率导致历史爬坡样本数量严重不足,并制约了传统功率预测模型的预测精度。针对此类问题,提出一种基于生成对抗网络的风电爬坡功率预测方案。将历史爬坡数据和模拟特征量作为输入,通过生成器和判别器的对抗训练,生成大量与历史爬坡数据特征相似的模拟爬坡数据,实现爬坡数据集的扩充。再将扩充后的爬坡数据集输入给长短期记忆神经网络算法,进行风电爬坡功率预测。通过仿真测试,验证了该方法在历史爬坡数据匮乏情况下风电爬坡功率预测的有效性。并与传统预测方法进行了对比,证明了其预测的精确性。 展开更多
关键词 风电功率预测 神经网络 生成对抗网络 功率爬坡事件
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部