期刊导航
期刊开放获取
上海教育软件发展有限公..
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于小波变换与优化BP神经网络的超短期光伏发电功率预测
被引量:
5
1
作者
夏晓荣
胡鹏飞
+3 位作者
王飞
张明晨
赵洁
王波
《电网与清洁能源》
CSCD
北大核心
2024年第10期159-166,共8页
光伏发电功率的精确预测可以帮助电网实现更精细的管理,提高能源利用率;但光伏发电功率受到多种环境因素的影响,且具有较大的随机波动性,故挖掘光伏发电的效率特性非常困难。该文提出一种新方法,通过使用小波变换和优化BP神经网络来预...
光伏发电功率的精确预测可以帮助电网实现更精细的管理,提高能源利用率;但光伏发电功率受到多种环境因素的影响,且具有较大的随机波动性,故挖掘光伏发电的效率特性非常困难。该文提出一种新方法,通过使用小波变换和优化BP神经网络来预测超短期光伏发电功率。该方法基于皮尔逊系数,可以获得与气象因素相关的预测结果;基于离散小波变换(discrete wavelet transform,DWT),将原始功率一阶差分序列分解为若干个不同频段的分量,提取光伏出力波动的频域特性;利用K-means聚类方法对功率一阶差分值进行聚类,并建立相应的神经网络预测模型,通过重组所得预测结果,得到初始预测功率差分值;利用气象因素通过GAACO-BP神经网络修正预测所得功率差分值,得到最终预测功率序列。利用某光伏电站所记录的实际功率数据进行验证,结果表明:DWT-GA-ACO-BP预测模型能提供较为精确的预测结果。
展开更多
关键词
光伏出力预测
小波变换
优化BP神经网络
Kmeans
功率差分序列
超短期预测
在线阅读
下载PDF
职称材料
题名
基于小波变换与优化BP神经网络的超短期光伏发电功率预测
被引量:
5
1
作者
夏晓荣
胡鹏飞
王飞
张明晨
赵洁
王波
机构
国网湖北省电力有限公司荆门供电公司
交直流智能配电网湖北省工程中心
出处
《电网与清洁能源》
CSCD
北大核心
2024年第10期159-166,共8页
基金
国家自然科学基金项目(51777142)。
文摘
光伏发电功率的精确预测可以帮助电网实现更精细的管理,提高能源利用率;但光伏发电功率受到多种环境因素的影响,且具有较大的随机波动性,故挖掘光伏发电的效率特性非常困难。该文提出一种新方法,通过使用小波变换和优化BP神经网络来预测超短期光伏发电功率。该方法基于皮尔逊系数,可以获得与气象因素相关的预测结果;基于离散小波变换(discrete wavelet transform,DWT),将原始功率一阶差分序列分解为若干个不同频段的分量,提取光伏出力波动的频域特性;利用K-means聚类方法对功率一阶差分值进行聚类,并建立相应的神经网络预测模型,通过重组所得预测结果,得到初始预测功率差分值;利用气象因素通过GAACO-BP神经网络修正预测所得功率差分值,得到最终预测功率序列。利用某光伏电站所记录的实际功率数据进行验证,结果表明:DWT-GA-ACO-BP预测模型能提供较为精确的预测结果。
关键词
光伏出力预测
小波变换
优化BP神经网络
Kmeans
功率差分序列
超短期预测
Keywords
PV output forecast
discrete wavelet transform
optimized BP neural network
K-means
power differential sequences
ultra-short term forecast
分类号
TM615 [电气工程—电力系统及自动化]
在线阅读
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于小波变换与优化BP神经网络的超短期光伏发电功率预测
夏晓荣
胡鹏飞
王飞
张明晨
赵洁
王波
《电网与清洁能源》
CSCD
北大核心
2024
5
在线阅读
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部