As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by exp...As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by experimental methods.First,the fatigue threshold test and fatigue crack growth rate test of this high-strength steel under different stress ratios were carried out.The influence of stress ratio on the fatigue properties of this steel was analyzed.Secondly,scanning electron microscope was used to analyze the crack growth specimen section of this steel.The crack growth and failure mechanism of this steel were revealed.Finally,based on the above research results,the stress ratio effect of high-strength steel was investigated from the perspectives of crack closure and driving force.Considering the fatigue behavior in the near-threshold stage and the destabilization stage,a fatigue crack growth behavior prediction model of highstrength steel was established.The accuracy of the model was verified by test data.Moreover,the applicability of the modified model to various materials and its excellent predictive ability were verified through comparison with literature data and existing models.展开更多
To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and stra...To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.展开更多
In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compa...In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model.展开更多
To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used a...To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.展开更多
Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ...Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.展开更多
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener...This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.展开更多
A precise friction model is essential for the prediction of tyre wet grip performance and optimization of pavement surface texture design.A mechanical system for predicting the wet grip potential of asphalt pavement w...A precise friction model is essential for the prediction of tyre wet grip performance and optimization of pavement surface texture design.A mechanical system for predicting the wet grip potential of asphalt pavement was systematically presented using an extended rubber material model by a time step integration scheme.This analytical approach was transferred to a 2D numerical multi-body system consisting of interconnected masses,coupling spring and elementary rubber element of a generalized Maxwell model of rubber tyre tread.The system consists of two basic modules with the same program structure and algorithm,considering the frequency-,temperature-,and strain-dependency behaviors of the complex dynamic modulus of rubber element.The dependence of penetration depth and friction coefficient on the velocity was simulated and validated.It can be concluded that this system can be used for predicting the wet grip potential of asphalt pavements.展开更多
Residual stress distributions in 7075 aluminum alloy thick plates with different thicknesses and different quenching speeds were measured. A shape function of stress distribution was proposed based on the internal str...Residual stress distributions in 7075 aluminum alloy thick plates with different thicknesses and different quenching speeds were measured. A shape function of stress distribution was proposed based on the internal stress distribution characteristics of aluminum alloy. Using nonlinear regression technology,the function between stress value of key points on internal stress curve and surface stress of the plate was obtained. Based on the measured surface stress,stress value of key points and stress distribution shape,the internal stress distribution can be reconstructed. The experiments show that the model is of good engineering practicality.展开更多
文摘As a typical steel,the fatigue of marine high-strength steels has been emphasized by scholars.In this paper,the fatigue performance and crack growth mechanism of a high-strength steel for ships are investigated by experimental methods.First,the fatigue threshold test and fatigue crack growth rate test of this high-strength steel under different stress ratios were carried out.The influence of stress ratio on the fatigue properties of this steel was analyzed.Secondly,scanning electron microscope was used to analyze the crack growth specimen section of this steel.The crack growth and failure mechanism of this steel were revealed.Finally,based on the above research results,the stress ratio effect of high-strength steel was investigated from the perspectives of crack closure and driving force.Considering the fatigue behavior in the near-threshold stage and the destabilization stage,a fatigue crack growth behavior prediction model of highstrength steel was established.The accuracy of the model was verified by test data.Moreover,the applicability of the modified model to various materials and its excellent predictive ability were verified through comparison with literature data and existing models.
基金Project(51304171)supported by the National Natural Science Foundation of ChinaProject(E2013203248)supported by Natural Science Foundation of Hebei Province of ChinaProject(NECSR-201209)supported by Open Foundation of the National Engineering Research Center for Equipment and Technology of Cold Rolling Strip,China
文摘To realize numerical simulation of rolling and obtain the hot forming process parameters for X70 HD steel, the flow stress behaviors of X70 HD steel were investigated under different temperatures(820-1100 ℃ and strain rates(0.01-10 s-1) on a Gleeble-3500 thermo-simulation machine. A new flow stress model was established. The linear and exponential relationship methods were applied to the parameters with respect to temperature and deformation rates. The rise of curve ends under certain conditions was analyzed. The flow stress of X70 HD steel predicted by the proposed model agrees well with the experimental results. So, it greatly improves the precision of the metal thermoplastic processing through finite element method and practical application of engineering.
基金Projects(51575539, U1837207) supported by the National Natural Science Foundation of ChinaProject(2020RC2002)supported by the Science and Technology Innovation Program of Hunan Province,ChinaProject(2021JJ40774)supported by Natural Science Foundation of Hunan Province,China。
文摘In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model.
基金Project(Kfkt2013-12)supported by Open Research Fund of Key Laboratory of High Performance Complex Manufacturing of Central South University,ChinaProject(2014002)supported by the Open Fund of Shanghai Key Laboratory of Digital Manufacture for Thin-walled Structures,ChinaProject(51375013)supported by the National Natural Science Foundation of China
文摘To gain a thorough understanding of the load state of parallel kinematic machines(PKMs), a methodology of elastodynamic modeling and joint reaction prediction is proposed. For this purpose, a Sprint Z3 model is used as a case study to illustrate the process of joint reaction analysis. The substructure synthesis method is applied to deriving an analytical elastodynamic model for the 3-PRS PKM device, in which the compliances of limbs and joints are considered. Each limb assembly is modeled as a spatial beam with non-uniform cross-section supported by lumped virtual springs at the centers of revolute and spherical joints. By introducing the deformation compatibility conditions between the limbs and the platform, the governing equations of motion of the system are obtained. After degenerating the governing equations into quasi-static equations, the effects of the gravity on system deflections and joint reactions are investigated with the purpose of providing useful information for the kinematic calibration and component strength calculations as well as structural optimizations of the 3-PRS PKM module. The simulation results indicate that the elastic deformation of the moving platform in the direction of gravity caused by gravity is quite large and cannot be ignored. Meanwhile, the distributions of joint reactions are axisymmetric and position-dependent. It is worthy to note that the proposed elastodynamic modeling method combines the benefits of accuracy of finite element method and concision of analytical method so that it can be used to predict the stiffness characteristics and joint reactions of a PKM throughout its entire workspace in a quick and accurate manner. Moreover, the present model can also be easily applied to evaluating the overall rigidity performance as well as statics of other PKMs with high efficiency after minor modifications.
基金Project(2016YFC0802203)supported by the National Key R&D Program of ChinaProject(2013G001-A-2)supported by the Science and Technology Research and Development Program of China Railway CorporationProject(SKLGDUEK2011)supported by the State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining&Technology。
文摘Based on the field destructive test of six rock-socketed piles with shallow overburden,three prediction models are used to quantitatively analyze and predict the intact load−displacement curve.The predicted values of ultimate uplift capacity were further determined by four methods(displacement controlling method(DCM),reduction coefficient method(RCM),maximum curvature method(MCM),and critical stiffness method(CSM))and compared with the measured value.Through the analysis of the relationship between the change rate of pullout stiffness and displacement,a method used to determine the ultimate uplift capacity via non-intact load−displacement curve was proposed.The results show that the predicted value determined by DCM is more conservative,while the predicted value determined by MCM is larger than the measured value.This suggests that RCM and CSM in engineering applications can be preferentially applied.Moreover,the development law of the change rate of pullout stiffness with displacement agrees well with the attenuation form of power function.The theoretical predicted results of ultimate uplift capacity based on the change rate of pullout stiffness will not be affected by the integrity of the curve.The method is simple and applicable for the piles that are not loaded to failure state,and thus provides new insights into ultimate uplift capacity determination of test piles.
基金Project(51774219)supported by the National Natural Science Foundation of China
文摘This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling.
基金Project(FP6-PL-0506437) supported by European CommissionProject(50908053) supported by the National Natural Science Foundation of China
文摘A precise friction model is essential for the prediction of tyre wet grip performance and optimization of pavement surface texture design.A mechanical system for predicting the wet grip potential of asphalt pavement was systematically presented using an extended rubber material model by a time step integration scheme.This analytical approach was transferred to a 2D numerical multi-body system consisting of interconnected masses,coupling spring and elementary rubber element of a generalized Maxwell model of rubber tyre tread.The system consists of two basic modules with the same program structure and algorithm,considering the frequency-,temperature-,and strain-dependency behaviors of the complex dynamic modulus of rubber element.The dependence of penetration depth and friction coefficient on the velocity was simulated and validated.It can be concluded that this system can be used for predicting the wet grip potential of asphalt pavements.
基金Projects(2005CB623708, 2010CB731703) supported by the National Basic Research Program of China
文摘Residual stress distributions in 7075 aluminum alloy thick plates with different thicknesses and different quenching speeds were measured. A shape function of stress distribution was proposed based on the internal stress distribution characteristics of aluminum alloy. Using nonlinear regression technology,the function between stress value of key points on internal stress curve and surface stress of the plate was obtained. Based on the measured surface stress,stress value of key points and stress distribution shape,the internal stress distribution can be reconstructed. The experiments show that the model is of good engineering practicality.