期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
遗传算法与神经网络结合优化焊接接头力学性能预测模型 被引量:20
1
作者 董志波 魏艳红 +1 位作者 占小红 魏永强 《焊接学报》 EI CAS CSCD 北大核心 2007年第12期69-72,共4页
基于建立的反向传播(back propagation,BP)神经网络焊接接头力学性能预测模型,并综合运用遗传算法(genetic algorithm,GA)来优化BP神经网络连接权的方法,对模型预测性能进行了有效的改进,提高了神经网络模型的预测精度和泛化能力。对模... 基于建立的反向传播(back propagation,BP)神经网络焊接接头力学性能预测模型,并综合运用遗传算法(genetic algorithm,GA)来优化BP神经网络连接权的方法,对模型预测性能进行了有效的改进,提高了神经网络模型的预测精度和泛化能力。对模型性能的分析表明,焊接接头力学性能预测模型的预测规律符合已有研究结论,预测误差小于5%。随着样本数据的不断充实,样本覆盖空间的不断扩大,力学性能预测模型的应用范围将不断扩大,其实际应用价值也必将越来越高。 展开更多
关键词 遗传算法 神经网络 反向传播 力学性能预测模型
在线阅读 下载PDF
基于融合RBF-PSO-AE算法的混凝土力学性能预测 被引量:2
2
作者 黄晨亮 郭力群 +1 位作者 吕阳阳 刘畅 《计量学报》 CSCD 北大核心 2022年第11期1464-1469,共6页
针对混凝土材料力学性能精准预测的问题,提出了一种粒子群算法(PSO)优化的径向基函数(RBF)与自编码器(AE)融合预测模型(RBF-PSO-AE),对混凝土断裂能、失稳韧度和起裂韧度等参数进行预测分析。首先运用RBF结合AE使用交叉熵损失函数对数... 针对混凝土材料力学性能精准预测的问题,提出了一种粒子群算法(PSO)优化的径向基函数(RBF)与自编码器(AE)融合预测模型(RBF-PSO-AE),对混凝土断裂能、失稳韧度和起裂韧度等参数进行预测分析。首先运用RBF结合AE使用交叉熵损失函数对数据特征降维加速收敛,其次利用PSO快速优化模型的网络最佳权值,最后将该模型与多种单一预测模型进行实验比较。实验结果表明该算法模型预测精确度和泛化能力提升明显,实现大于99.99%的预测精度,均方根误差0.006%,能有效减少混凝土力学性能预测的误差,具有良好的鲁棒性。 展开更多
关键词 计量学 混凝土材料 力学性能预测模型 径向基函数 粒子群算法 自编码器
在线阅读 下载PDF
膨胀岩地层盾构壁后混杂纤维注浆浆液性能研究
3
作者 郭天宇 李慎刚 +2 位作者 刘晋宁 蒋琛 籍湛 《辽宁工程技术大学学报(自然科学版)》 北大核心 2025年第1期71-82,共12页
为解决穿越膨胀岩地层的盾构隧道管片受到特殊围岩吸水膨胀变形不利影响的问题,以钠基膨润土、水泥、粉煤灰、河砂、水为原材料配制的盾构壁后注浆浆液作为基体,混掺加入聚丙烯纤维(PPF)和玄武岩纤维(BF),提高注浆结石体的缓冲能力、变... 为解决穿越膨胀岩地层的盾构隧道管片受到特殊围岩吸水膨胀变形不利影响的问题,以钠基膨润土、水泥、粉煤灰、河砂、水为原材料配制的盾构壁后注浆浆液作为基体,混掺加入聚丙烯纤维(PPF)和玄武岩纤维(BF),提高注浆结石体的缓冲能力、变形能力和韧性。通过设定不同水平的纤维体积掺量和纤维体积混掺比,探究混杂纤维对注浆浆液性能的影响规律,分析了作用机理,最后建立力学性能预测模型。研究结果表明:混杂纤维的加入对注浆浆液的性能影响显著,特别是对注浆结石体的力学性能有明显的改良增韧效果。研究结论可为混杂纤维在盾构壁后注浆工程的应用提供参考依据。 展开更多
关键词 膨胀岩地层 盾构壁后注浆浆液 混杂纤维 体积掺量 体积混掺比 力学性能预测模型
在线阅读 下载PDF
Effect of double ageing on performance and establishment of prediction model for 6005 aluminum alloy 被引量:2
4
作者 WANG Xu-cheng HUANG Yuan-chun +2 位作者 ZHANG Li-hua ZHANG Yun HUANG Shi-ta 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期973-985,共13页
In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compa... In the present investigation, the relation of pre-ageing temperature and pre-ageing time to mechanical properties was studied, and a model was established to predict the mechanical properties of AA6005 Al alloy. Compared with the experimental results, the deviation of the proposed model was limited to 8.1%, which showed reasonable accuracy of forecasting. It was found that the performance of AA6005 alloy was better at higher pre-ageing temperature with shorter pre-ageing time than that at T6 temper. The microstructure of the alloy was observed by transmission electron microscopy, and the results showed that high dislocation density and precipitate density existed at 160 ℃ and 200 ℃ pre-ageing, which were in good agreement with the model. 展开更多
关键词 Al alloy heat treatment MODEL mechanical performance strengthening mechanism
在线阅读 下载PDF
Modeling hot strip rolling process under framework of generalized additive model 被引量:3
5
作者 LI Wei-gang YANG Wei +2 位作者 ZHAO Yun-tao YAN Bao-kang LIU Xiang-hua 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2379-2392,共14页
This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with gener... This research develops a new mathematical modeling method by combining industrial big data and process mechanism analysis under the framework of generalized additive models(GAM)to generate a practical model with generalization and precision.Specifically,the proposed modeling method includes the following steps.Firstly,the influence factors are screened using mechanism knowledge and data-mining methods.Secondly,the unary GAM without interactions including cleaning the data,building the sub-models,and verifying the sub-models.Subsequently,the interactions between the various factors are explored,and the binary GAM with interactions is constructed.The relationships among the sub-models are analyzed,and the integrated model is built.Finally,based on the proposed modeling method,two prediction models of mechanical property and deformation resistance for hot-rolled strips are established.Industrial actual data verification demonstrates that the new models have good prediction precision,and the mean absolute percentage errors of tensile strength,yield strength and deformation resistance are 2.54%,3.34%and 6.53%,respectively.And experimental results suggest that the proposed method offers a new approach to industrial process modeling. 展开更多
关键词 industrial big data generalized additive model mechanical property prediction deformation resistance prediction
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部