期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Mechanical properties and permeability evolution of sandstone subjected to the coupling effects of chemical-seepage-stress
1
作者 WANG Wei CHEN Chao-wei +3 位作者 CAO Ya-jun JIA Yun LIU Shi-fan SHEN Wan-qing 《Journal of Central South University》 2025年第2期552-565,共14页
In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepa... In this study,a series of triaxial tests are conducted on sandstone specimens to investigate the evolution of their mechanics and permeability characteristics under the combined action of immersion corrosion and seepage of different chemical solutions.It is observed that with the increase of confining pressure,the peak stress,dilatancy stress,dilatancy stress ratio,peak strain,and elastic modulus of the sandstone increase while the Poisson ratio decreases and less secondary cracks are produced when the samples are broken.The pore pressure and confining pressure have opposite influences on the mechanical properties.With the increase of the applied axial stress,three stages are clearly identified in the permeability evolution curves:initial compaction stage,linear elasticity stage and plastic deformation stage.The permeability reaches the maximum value when the highest volumetric dilatancy is obtained.In addition,the hydrochemical action of salt solution with pH=7 and 4 has an obvious deteriorating effect on the mechanical properties and induces the increase of permeability.The obtained results will be useful in engineering to understand the mechanical and seepage properties of sandstone under the coupled chemical-seepage-stress multiple fields. 展开更多
关键词 red sandstone chemical corrosion multi-field coupling mechanical characteristics permeability evolution
在线阅读 下载PDF
锂离子电池硅负极材料衰退机理的研究进展 被引量:5
2
作者 马增胜 周益春 +3 位作者 刘军 薛冬峰 杨庆生 潘勇 《力学进展》 EI CSCD 北大核心 2013年第6期581-599,共19页
硅负极材料由于具有非常高的理论比容量,使之成为锂离子电池极具前景的负极替代材料.然而,硅负极材料在充放电过程中会发生非常大的体积变形,这会引起活性材料的破坏失效,严重影响其电化学循环性能,成为制约其在锂离子电池领域广泛应用... 硅负极材料由于具有非常高的理论比容量,使之成为锂离子电池极具前景的负极替代材料.然而,硅负极材料在充放电过程中会发生非常大的体积变形,这会引起活性材料的破坏失效,严重影响其电化学循环性能,成为制约其在锂离子电池领域广泛应用的最大瓶颈.本文介绍了硅负极材料的不同结构形态及其在充放电过程中电化学性能的退化机理,并综述了充放电过程中的力学性能演化、相关理论分析、数值模拟计算等方面的最新国际研究进展,展望了硅负极材料力学失效方面的研究重点. 展开更多
关键词 锂离子电池 硅负极材料 离子扩散 数值模拟 力——化耦合
在线阅读 下载PDF
Aging Characteristics of Lithium-Ion Battery Under Fast Charging Based on Electrochemical-thermalmechanical Coupling Model
3
作者 Dong-Xu Zuo Pei-Chao Li 《电化学(中英文)》 CAS 北大核心 2024年第9期10-24,共15页
The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multip... The aging characteristics of lithium-ion battery(LIB)under fast charging is investigated based on an electrochemical-thermal-mechanical(ETM)coupling model.Firstly,the ETM coupling model is established by COMSOL Multiphysics.Subsequently,a long cycle test was conducted to explore the aging characteristics of LIB.Specifically,the effects of charging(C)rate and cycle number on battery aging are analyzed in terms of nonuniform distribution of solid electrolyte interface(SEI),SEI formation,thermal stability and stress characteristics.The results indicate that the increases in C rate and cycling led to an increase in the degree of nonuniform distribution of SEI,and thus a consequent increase in the capacity loss due to the SEI formation.Meanwhile,the increases in C rate and cycle number also led to an increase in the heat generation and a decrease in the heat dissipation rate of the battery,respectively,which result in a decrease in the thermal stability of the electrode materials.In addition,the von Mises stress of the positive electrode material is higher than that of the negative electrode material as the cycling proceeds,with the positive electrode material exhibiting tensile deformation and the negative electrode material exhibiting compressive deformation.The available lithium ion concentration of the positive electrode is lower than that of the negative electrode,proving that the tensile-type fracture occurring in the positive material under long cycling dominated the capacity loss process.The aforementioned studies are helpful for researchers to further explore the aging behavior of LIB under fast charging and take corresponding preventive measures. 展开更多
关键词 Lithium-ion battery Aging characteristics Fast charging Electrochemical-thermal-mechanical coupling model
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部