期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
变截面波形钢腹板箱梁剪应力计算理论 被引量:15
1
作者 刘超 黄钰豪 高展 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2019年第4期475-481,共7页
在平截面假定和无相对滑移等条件下,基于弹性梁段微元给出了变宽变高波形钢腹板截面剪应力计算理论,认为剪力、弯矩和轴力均会产生剪应力,并且后两者仅仅在变截面产生剪应力.建立了有限元模型,并将传统计算理论和该计算理论与有限元计... 在平截面假定和无相对滑移等条件下,基于弹性梁段微元给出了变宽变高波形钢腹板截面剪应力计算理论,认为剪力、弯矩和轴力均会产生剪应力,并且后两者仅仅在变截面产生剪应力.建立了有限元模型,并将传统计算理论和该计算理论与有限元计算结果进行对比,验证了该计算理论的可靠性. 展开更多
关键词 波形钢腹板 剪应力计算理论 剪力分配 变宽变高截面 有限元分析
在线阅读 下载PDF
变截面波形钢腹板组合箱梁腹板剪应力实用计算方法研究 被引量:7
2
作者 李杰 武海鹏 陈淮 《铁道科学与工程学报》 CAS CSCD 北大核心 2017年第1期80-86,共7页
为了计算变截面波形钢腹板组合箱梁腹板中的剪应力及其承剪比,考虑变截面效应,通过弹性微元段的受力平衡方程,计入弯矩和轴力引起的附加剪应力,导出变截面波形钢腹板组合箱梁的腹板剪应力计算公式;依据节段施工的波形钢腹板组合箱梁桥... 为了计算变截面波形钢腹板组合箱梁腹板中的剪应力及其承剪比,考虑变截面效应,通过弹性微元段的受力平衡方程,计入弯矩和轴力引起的附加剪应力,导出变截面波形钢腹板组合箱梁的腹板剪应力计算公式;依据节段施工的波形钢腹板组合箱梁桥结构的建造特点,考虑节段内梁底线形为线性变化,将公式中各参数的微分运算转化为简单的代数运算,给出实用求解方法;最后通过算例对所推导公式的计算结果与等截面计算公式和有限元数值结果进行对比。研究结果表明:变截面梁的梁高和底板厚度的变化对剪应力有较大影响,波形钢腹板剪应力计算应当考虑变截面效应影响,波形钢腹板剪应力实用计算方法能方便工程应用。 展开更多
关键词 波形钢腹板 承剪比 变截面 附加剪应力 剪应力计算公式
在线阅读 下载PDF
大悬臂PC盖梁根部受力性能试验与分析
3
作者 胡志坚 张申昕 《哈尔滨工业大学学报》 北大核心 2025年第3期55-68,共14页
大悬臂预应力混凝土盖梁(以下简称大悬臂PC盖梁)通常会在悬臂根部设置折线段来保证结构的受力性能,但尚未有合理的折线段尺寸设计依据。为此,通过将附加折线段等效为弧线段,提出了折线段大悬臂PC盖梁的剪应力计算理论;针对大悬臂PC盖梁... 大悬臂预应力混凝土盖梁(以下简称大悬臂PC盖梁)通常会在悬臂根部设置折线段来保证结构的受力性能,但尚未有合理的折线段尺寸设计依据。为此,通过将附加折线段等效为弧线段,提出了折线段大悬臂PC盖梁的剪应力计算理论;针对大悬臂PC盖梁的折线段尺寸设计问题进行了1∶4的缩尺模型试验,分析了折线段对悬臂根部剪应力分布及受力性能的影响;并根据结构弯剪受力强度要求,给出了不同盖梁悬臂长度、受压边倾角及预应力水平等设计参数下的最小折线段长度比计算公式。结果表明:所提出的折线段变截面梁剪应力计算理论能较好地反映折线段设置对剪应力纵向分布带来的影响,顶缘最不利受力位置由悬臂根部转变为变受压边倾角处,随着折线段长度比的增加,盖梁顶底缘应力峰值均有所降低,需要通过控制折线段尺寸来保证结构受压边底缘的强度要求。所给出的最小折线段长度比计算公式对不同设计参数的大悬臂PC盖梁均能保证其有效精度,具有一定的实用性。 展开更多
关键词 折线段大悬臂盖梁 悬臂根部受力性能 剪应力计算 缩尺模型试验 折线段尺寸
在线阅读 下载PDF
Analysis of complete plasticity assumption for solid circular shaft under pure torsion and calculation of shear stress 被引量:1
4
作者 刘光连 黄明辉 +2 位作者 谭青 李显方 刘振 《Journal of Central South University》 SCIE EI CAS 2011年第4期1018-1023,共6页
The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researc... The distribution of shear stress on the cross-section of plastic metal solid circular shaft under pure torsion yielding, the applicability of complete plastic model assumption and the shear stress formula were researched. Based on the shear stress formula of circular shaft under pure torsion in elastic stage, the formula of torque in elastic stage and the definition of yield, it is obtained that the yielding stage of plastic metal shaft under pure torsion is only a surface phenomenon of torque-torsion angle relationship, and the distribution of shear stress is essentially different from that of tensile stress when yielding under uniaxial tension. The pure torsion platform-torsion angle and the shape of torque-torsion angle curve cannot change the distribution of shear stress on the shaft cross-section. The distribution of shear stress is still linear with the maximum shear stress ts. The complete plasticity model assumption is not in accordance with the actual situation of shaft under torsion. The experimental strength data of nine plastic metals are consistent with the calculated results of the new limiting strain energy strength theory (LSEST). The traditional yield stress formula for plastic shaft under torsion is reasonable. The shear stress formula based on the plane assumption in material mechanics is applicable for all loaded stages of torsion shaft. 展开更多
关键词 pure torsion YIELD complete plastic model assumption shear stress calculation limiting strain energy strength theory
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部